Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ФОТОСИНТЕЗ

ФОТОСИНТЕЗ, образование зелеными растениями и нек-рыми бактериями орг. в-в с использованием энергии солнечного света. Происходит при участии пигментов (у растений хлорофиллов). В основе фотосинтеза лежат окислит.-восстановит. р-ции, в к-рых электроны переносятся от донора (напр., H2O, H2S) к акцептору (CO2) с образованием восстановленных соед. (углеводов) и выделением O2 (если донор электронов H2O), S (если донор электронов, напр., H2S) и др.

Фотосинтез- один из самых распространенных процессов на Земле, обусловливает круговорот в природе углерода, O2 и др. элементов. Он составляет материальную и энергетич. основу всего живого на планете. Ежегодно в результате фотосинтеза в виде орг. в-ва связывается ок. 8·1010 т углерода, образуется до 1011 т целлюлозы. Благодаря фотосинтезу растения суши образуют ок. 1,8·1011 т сухой биомассы в год; примерно такое же кол-во биомассы растений образуется ежегодно в Мировом океане. Тропич. лес вносит до 29% в общую продукцию фотосинтеза суши, а вклад лесов всех типов составляет 68%. Фотосинтез высших растений и водорослей - единственный источник атм. O2.

Возникновение на Земле ок. 2,8 млрд. лет назад механизма окисления воды с образованием O2 представляет собой важнейшее событие в биол. эволюции, сделавшее свет Солнца главным источником-своб. энергии биосферы, а воду - практически неограниченным источником водорода для синтеза в-в в живых организмах. В результате образовалась атмосфера совр. состава, O2 стал доступным для окисления пищи (см. Дыхание), а это обусловило возникновение высокоорганизов. гетеротрофных организмов (применяют в качестве источника углерода экзогенные орг. в-ва).

Ок. 7% орг. продуктов фотосинтеза человек использует в пищу, в качестве корма для животных, а также в виде топлива и строит. материала. Ископаемое топливо - тоже продукт фотосинтеза. Его потребление в кон. 20 в. примерно равно приросту биомассы.

Общее запасание энергии солнечного излучения в виде продуктов фотосинтеза составляет ок. 1,6 · 1021 кДж в год, что примерно в 10 раз превышает совр. энергетич. потребление человечества. Примерно половина энергии солнечного излучения приходится на видимую область спектра (длина волны l от 400 до 700 нм), к-рая используется для фотосинтеза (физиологически активная радиация, или ФАР). ИК излучение не пригодно для фотосинтеза кислородвыделяющих организмов (высших растений и водорослей), но используется нек-рыми фотосинтезирующи-ми бактериями.

В связи с тем, что углеводы составляют осн. массу продуктов биосинтетич. деятельности растений, хим. ур-ние фотосинтеза обычно записывают в виде:

5035-4.jpg

Для этой р-ции 5035-5.jpg 469,3 кДж/моль, понижение энтропии 30,3 Дж/(К·моль), 5035-6.jpg -479 кДж/моль. Квантовый расход фотосинтеза для одноклеточных водорослей в лаб. условиях составляет 8-12 квантов на молекулу CO2. Утилизация при фотосинтезе энергии солнечного излучения, достигающего земной пов-сти, составляет не более 0,1% всей ФАР. Наиб. продуктивные растения (напр., сахарный тростник) в среднем за год усваивают ок. 2% энергии падающего излучения, а зерновые культуры - до 1%. Обычно суммарная продуктивность фотосинтеза ограничена содержанием CO2 в атмосфере (0,03-0,04% по объему), интенсивностью света и т-рой. Зрелые листья шпината в атмосфере нормального состава при 25 0C на свету насыщающей интенсивности (при солнечном освещении) дают неск. литров O2 в час на грамм хлорофилла или на килограмм сухого веса. Для водорослей Chlorella pyrenoidosa при 35 0C повышение концентрации CO2 от 0,03 до 3% позволяет повысить выход O2 в 5 раз, такая активация является предельной.

Бактериальный фотосинтез и общее ур-ние фотосинтеза. Наряду с фотосинтезом высших растений и водорослей, сопровождаемым выделением O2, в природе осуществляется бактериальный фотосинтез, в к-ром окисляемым субстратом является не вода, а др. соединения, обладающие более выраженными восстановит. св-вами, напр. H2S, SO2. Кислород при бактериальном фотосинтезе не выделяется, напр.:

5035-7.jpg

Фотосинтезирующие бактерии способны использовать не только видимое, но и ближнее ИК излучение (до 1000 нм) в соответствии со спектрами поглощения преобладающих в них пигментов - бактериохлорофиллов. Бактериальный фотосинтез не имеет существенного значения в глобальном запасании солнечной энергии, но важен для понимания общих механизмов фотосинтеза. Кроме того, локально бескислородный фотосинтез может вносить существенный вклад в суммарную продуктивность планктона. Так, в Черном море кол-во хлорофилла и бактериохлорофил-ла в столбе воды в ряде мест приблизительно одинаково.

Учитывая данные о фотосинтезе высших растений, водорослей и фотосинтезирующих бактерий, обобщенное ур-ние фотосинтеза можно записать в виде:

5035-8.jpg

А - кислород в случае высших растений и водорослей, S либо др. элементы - в бактериальном фотосинтезе.

Мол. механизм фотосинтеза и структура фотосинтетич. аппарата.

С использованием изотопных меток показано, что источником O2 в фотосинтезе является только вода:

5035-9.jpg

Фотосинтез пространственно и во времени разделяется на два сравнительно обособленных процесса: световую стадию окисления воды и темновую стадию восстановления CO2 (рис. 1). Обе эти стадии осуществляются у высших растений и водорослей в специализир. органеллах клетки - хлоропластах. Исключение - синезеленые водоросли (цианобактерии), у к-рых нет аппарата фотосинтеза, обособленного от цитоплазматич. мембран.

5035-10.jpg

Хлоропласт, представляющий собой замкнутую структуру, отделенную от остальной части клетки оболочкой, заключает в себе весь фотосинтетич. аппарат. Световая стадия реализуется в мембранных структурах хлоропласта (т. наз. тилакои-дах), тогда как темновая стадия происходит в жидком содержимом хлоропласта (строме) при участии водорастворимых ферментов. У фотосинтезирующих бактерий хлоропласты отсутствуют, но световая стадия также осуществляется в мембранных образованиях - в т. наз. хроматофорах.

Световая стадия. Миним. функциональная единица, еще способная осуществлять световую стадию фотосинтеза,- тилакоид. Он представляет собой микроскопич. плоский диск, образованный белковолипидными мембранами, в к-рых находятся пигменты. В эти мембраны встроены все компоненты, необходимые для окисления воды, восстановления кофермента никотинамиддинуклеотидфосфата (НАДФ) до НАДФН и синтеза АТФ из аденозиндифосфата. Световая стадия инициируется поглощением кванта света пигментами, организованными в спец. светособирающие комплексы. Среди пигментов преобладает хлорофилл а. К вспомогат. пигментам относятся хлорофилл b, каротиноиды и др. Наличие светособирающей структуры из неск. сотен или десятков молекул пигментов на каждый фотохимически активный (реакционный) центр на 2-3 порядка увеличивает сечение захвата излучения и обеспечивает возможность фотосинтеза при слабом освещении.

Часть вспомогат. пигментов, спектрально наиб. близких к фотохимически активному хлорофиллу, непосредственно окружает каждый из реакционных центров, образуя т. наз. антенны.

Высокая эффективность переноса возбуждения от молекулы, поглотившей квант, к фотохим. центру определяется спектр. св-вами и структурной организацией пигментов светособирающего комплекса и антенны, окружающей фотохим. центр. Эти пигменты обеспечивают передачу возбуждения за время менее 100 пс в пределах времени жизни синглетно возбужденного состояния хлорофилла.

В реакц. центре фотосинтеза, куда почти со 100%-ной вероятностью переносится возбуждение, происходит первичная р-ция между фотохимически активной молекулой хлорофилла а (у бактерий - бактериохлорофилла) и первичным акцептором электрона (ПА). Дальнейшие р-ции в тилакоидных мембранах происходят между молекулами в их осн. состояниях и не требуют возбуждения светом. Эти р-ции организованы в электронтранспортную цепь - последовательность фиксированных в мембране переносчиков электрона. В электронтранс-портной цепи высших растений и водорослей содержится два фотохим. центра (фотосистемы), действующих последовательно (рис. 2), в бактериальной электронтранспортной цепи - один (рис. 3).

5035-11.jpg

В фотосистеме II высших растений и водорослей синглетно возбужденный хлорофилл а в центре Р680 (число 680 обозначает, что максимум спектральных изменений системы при возбуждении светом находится вблизи 680 нм) отдает электрон через промежуточный акцептор к феофитину (ФЕО, безмагниевый аналог хлорофилла), образуя катион-радикал 5035-12.jpg . Анион-радикал восстановленного феофитина служит далее донором электрона для связанного пластохинона (ПХ*; отличается от убихинонов заместителями в хиноидном кольце), координированного с ионом Fe3+ (в бактериях имеется аналогичный Fе3+-убихинонный комплекс). Далее электрон переносится по цепи, включающей свободный пластохинон (ПХ), присутствующий в избытке по отношению к остальным компонентам цепи, затем цитохромы (Ц) b6 и f, образующие комплекс с железо-серным центром, через медьсодержащий белок пластоцианин (ПЦ; мол. м. 10400) к реакционному центру фотосистемы I.

Центры 5035-13.jpg быстро восстанавливаются, принимая электрон через ряд промежут. переносчиков от воды. Образование O2 требует последоват. четырехкратного возбуждения реакционного центра фотосистемы П и катализируется мембранным комплексом, содержащим Mn.

Хлорофилл a в фотосистеме I, имеющий максимум поглощения вблизи 700 нм (центр Р700), является первичным фотовозбуждаемым донором электрона, к-рый он отдает первичному акцептору (ПА; его природа однозначно не установлена), а затем, через ряд промежут. переносчиков (Ai) -растворимому белку ферредоксину (ФД), восстанавливающему с помощью фермента ферредоксин-НАДФ-редуктазы (ФНР) НАДФ до НАДФН. Катион-радикал окисленного пигмента 5035-14.jpg восстанавливается пластоцианином.

В зрелых хлоропластах имеются граны (стопки тилакои-дов), в мембранах к-рых присутствуют все компоненты злек-тронтранспортной цепи, и т. наз. агранальные тилакоиды, не содержащие фотосистемы II.

Благодаря асимметрич. расположению компонентов электронтранспортной цепи относительно плоскости мембраны при разделении зарядов между хлорофиллом в каждом из двух фотосинтетич. центров и акцептором электрона на тилако-идной мембране создается разность электрич. потенциалов (плюс - на внутренней, минус - на внешней ее стороне). Перенос электрона пластохиноном сопровождается транспортом протонов, к-рые захватываются снаружи тилакоида при восстановлении пластохинона и освобождаются внутрь тилакоида при окислении пластогидрохинона. Перенос электронов сопряжен с синтезом АТФ из аденозиндифосфата (АДФ) и неорг. фосфата. Предполагают, что обратный транспорт протонов из тилакоидов в строму через белковый сопрягающий фактор (Н+-АТФ-синтетазу) сопровождается образованием АТФ.

5035-15.jpg

Фотосистема I может действовать автономно без контакта с системой II. В этом случае циклич. перенос электрона (на схеме показан пунктиром) сопровождается синтезом АТФ, а не НАДФН. Образующиеся в световой стадии кофермент

5035-16.jpg

НАДФН и АТФ используются в темновой стадии фотосинтеза, в ходе к-рой снова образуется НАДФ и АДФ.

Электронтранспортные цепи фотосинтезирующих бактерий в основных своих чертах аналогичны отдельным фрагментам таковых в хлорогшастах высших растений. На рис. 3 показана электронтранспортная цепь пурпурных бактерий.

Темновая стадия фотосинтеза. Все фотосинтезирующие организмы, выделяющие O2, а также нек-рые фотосинтезирующие бактерии сначала восстанавливают CO2 до фосфатов Сахаров в т. наз. цикле Калвина. У фотосинтезирующих бактерий встречаются, по-видимому, и др. механизмы. Большинство ферментов цикла Калвина находится в растворимом состоянии в строме хлоропластов.

5035-17.jpg

Упрощенная схема цикла показана на рис. 4. Первая стадия - карбоксилирование рибулозо-1,5-дифосфата и гидролиз продукта с ооразованием двух молекул 3-фосфоглицериновой к-ты. Эта С3-кислота фосфорили-руется АТФ с образованием 3-фос-фоглицероилфосфата, к-рый затем восстанавливается НАДФН до гли-церальдегид-3-фосфата. Полученный триозофосфат затем вступает в ряд р-ций изомеризации, конденсации и перегруппировок, дающих 3 молекулы рибулозо-5-фосфата. Последний фосфорилируется при участии АТФ с образованием риоу-лозо-1,5-дифосфата и, т. обр., цикл замыкается. Одна из 6 образующихся молекул глицеральдегид-3-фос-фата превращается в глюко-зо-6-фосфат и используется затем для синтеза крахмала либо выделяется из хлоропласта в цитоплазму. Глицеральдегид-3-фосфат может также превращаться в 3-глицеро-фосфат и затем в липиды. Триозофосфаты, поступающие из хлоропласта, превращаются в осн. в сахарозу, к-рая переносится из листа в др. части растения.

В одном полном обороте цикла Калвина расходуется 9 молекул АТФ и 6 молекул НАДФН для образования одной молекулы 3-фосфоглицериновой к-ты. Энергетич. эффективность цикла (отношение энергии фотонов, необходимых для фотосинтеза АТФ и НАДФН, к DG0 образования углевода из CO2) с учетом действующих в строме хлоропласта концентраций субстратов составляет 83%. В самом цикле Калвина нет фотохим. стадий, но световые стадии могут косвенно влиять на него (в т. ч. и на р-ции, не требующие АТФ или НАДФН) через изменения концентраций ионов Mg2+ и H+, а также уровня восстановленности ферредоксина.

Нек-рые высшие растения, приспособившиеся к высокой интенсивности света и к теплому климату (напр., сахарный тростник, кукуруза), способны предварительно фиксировать CO2 в дополнит. С4-цикле. При этом CO2 сначала включается в обмен четырехуглеродных дикарбоновых к-т, к-рые затем декарбоксилируются там, где локализован цикл Калвина. С4-Цикл характерен для растений с особым анатомич. строением листа и разделением ф-ций между двумя типами клеток: мезофильных, где сосредоточено карбоксилирование фосфоенолиировиноградной к-ты, и клеток обкладки сосудистого пучка, где функционирует цикл Калвина. Образующаяся в С4-цикле щавелевоуксусная кислота восстанавливается НАДФН до яблочной, к-рая перемещается в клетки сосудистой обкладки и здесь подвергается окислит, декарбоксили-рованию, образуя пировиноградную к-ту, CO2 и НАДФН. Два последних используются в цикле Калвина, а пировиноградная к-та возвращается в С4-цикл (рис. 5). Физиол. смысл С4-цикла состоит в запасании CO2 и повышении, т. обр., общей эффективности процесса.

Для кактусов, молочая и др. засухоустойчивых растений характерно частичное разделение фиксации CO2 и фотосинтеза во времени (САМ-обмен, или обмен по типу толстянковых; САМ сокр. от англ. Crassulaceae acid metabolism). Днем устьица (каналы, через к-рые осуществляется газообмен с атмосферой) закрываются, чтобы уменьшить испарение воды. При этом поступление CO2 также затруднено. Ночью устьица открываются, происходит фиксация CO2 в виде фосфоенол-пировиноградной к-ты с образованием С4-кислот, к-рые днем декарбоксилируются, а освобождаемый при этом CO2 включается в цикл Калвина (рис. 6).

Фотосинтез галобактерий. Единственный известный в природе не-хлорофилльный способ запасания энергии света осуществляют бактерии Halobacterium halobium. Ha ярком свету при пониженной концентрации O2 они образуют в своих мембранах пурпурный белок бактериородопсин. В результате индуцированной светом цис-транс-изомеризации ретиналя (хромофора этого пигмента) происходит поглощение H+ и синтез АТФ. Последний используется для частичного обеспечения энерге-тич. потребностей клетки.

5035-18.jpg

Историческая справка. Ок. 1770 Дж. Пристли обнаружил, что растения выделяют O2. В 1779 Я. Ингенхауз установил, что для этого необходим свет и что O2 выделяют только зеленые части растений. Ж. Сенебье в 1782 показал, что для питания растений требуется CO2; в нач. 19 в. H. Соссюр, исходя из закона сохранения массы, подтвердил, что большая часть массы растений создается из CO2 и воды. В 1817 П. Пельтье и Ж. Каванту выделили зеленый пигмент хлорофилл. Позже К.А. Тимирязев показал близость спектра действия фотосинтеза и спектра поглощения хлорофилла. Ю. Сакс в сер. 19 в., по-видимому, первым осознал, что этот продукт накапливается в хлоропластах, а Т.В. Энгельман доказал, что именно там же выделяется и O2.

В работах Ф. Блэкмана (1905), P. Эмерсона и У. Арнолда (1932), а также P. Хилла (1936-41) показано наличие световой и темновой стадий фотосинтеза и экспериментально реализована световая стадия в отсутствие CO2 с использованием искусств. акцепторов электрона. Тем самым были получены подтверждения представлений об образовании O2 путем окисления воды. Окончательно это было доказано масс-спектрометрич. методом (С. Рубен, M. Камен, а также А.П. Виноградов и Р.В. Тейс, 1941).

В 1935-41 К. Ван Ниль обобщил данные по фотосинтезу высших растений и бактерий и предложил общее ур-ние, охватывающее все типы фотосинтеза. X. Гаффрон и К. Воль, а также Л. Дёйсенс в 1936-52 на основе количеств. измерений выхода продуктов фотосинтеза поглощенного света и содержания хлорофилла сформулировали представление о "фотосинтетич. единице" - ансамбле молекул пигмента, осуществляющих светосбор и обслуживающих фотохим. центр.

В 40-50-х гг. M. Калвин, используя изотоп 14C, выявил механизм фиксации CO2. Д. Арнон (1954) открыл фотофос-форилирование (инициируемый светом синтез АТФ из АДФ и H3PO4) и сформулировал концепцию электронного транспорта в мембранах хлоропластов. P. Эмерсон и Ч.M. Льюис (1942-43) обнаружили резкое снижение эффективности фотосинтеза при 5035-19.jpg700 нм (красное падение, или первый эффект Эмерсона), а в 1957 Эмерсон наблюдал неаддитивное усиление фотосинтеза при добавлении света низкой интенсивности с 5035-20.jpg 650 нм к дальнему красному свету (эффект усиления, или второй эффект Эмерсона). На этом основании в 60-х гг. сформулировано представление о последовательно действующих фотосистемах в электронтранспортной цепи фотосинтеза с максимумами в спектрах действия вблизи 680 и 700 HM.

Осн. закономерности образования O2 при окислении воды в фотосинтезе установлены в работах Б. Кока и П. Жолио (1969-70). Близится к завершению выяснение мол. организации мембранного комплекса, катализирующего этот процесс. В 80-х гг. методом рентгеновского структурного анализа детально изучена структура отдельных компонентов фотосинтетич. аппарата, включая реакционные центры и светособирающие комплексы (И. Дайзенхофер, X. Михель, P. Хубер).

Лит.: Клейтон Р., Фотосинтеч. Физические механизмы и химические модели, пер. с англ., M., 1984; "Ж. Всес. хим. об-ва им. Д.И. Менделеева", 1986, т. 31, № 6; Фотосинтез, под ред. Говинджи, пер. с англ., т. 1-2, M., 1987; Итоги науки и техники, сер. Биофизика, т. 20-22, M., 1987. М.Г. Голъдфелъд.

Еще по теме:

     © ХиМиК.ру




Реклама   Обратная связь   Дизайн