Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий
Система Orphus

ФЕРМЕНТЫ

ФЕРМЕНТЫ (от лат. fermentum - закваска) (энзимы), белки, выполняющие роль катализаторов в живых организмах. Осн. ф-ции ферментов- ускорять превращение в-в, поступающих в организм и образующихся при метаболизме (для обновления клеточных структур, для обеспечения его энергией и др.), а также регулировать биохим. процессы (напр., реализацию ге-нетич. информации), в т. ч. в ответ на изменяющиеся условия.

О механизме р-ций с участием ферментов (ферментативных р-циях) см. Ферментативный катализ, Ферментативных реакций кинетика.

Структуру ферментов изучают методами хим. модификации, рентгеновского структурного анализа, спектроскопии. Ценные результаты получены методом сайт-специфичного мутагенеза, основанного на направленной замене аминокислот в белковой молекуле методами генетической инженерии. К кон. 20 в. известно и охарактеризовано ок. 3000 ферментов.

Исторический очерк. Начало совр. науки о ферментах (энзимоло-гии) связывают с открытием в 1814 К. Кирхгофом превращения крахмала в сахар под действием водных вытяжек из проростков ячменя. Действующее начало из этих вытяжек было выделено в 1833 А. Пайеном и Ж. Персо. Им оказался фермент амилаза. В 1836 T. Шванн обнаружил и описал пепсин, в том же году И. Пуркин и И. Паппенгейм охарактеризовали трипсин. В 1897 братья Г. и Э. Бухнеры выделили из дрожжей р-римый препарат (т. наз. зимазу), вызывавший спиртовое брожение. Этим был положен конец спору Л. Пастера (он полагал, что процесс брожения могут вызывать только целостные живые клетки) и Ю. Либиха (считал, что брожение связано с особыми в-вами). В кон. 19 в. Э. Фишер предложил первую теорию специфичности ферментов. В 1913 Л. Михаэлис сформулировал общую теорию кинетики ферментативных р-ций. В кристаллич. виде первые ферменты были получены Дж. Самнером в 1926 (уреаза) и Дж. Нортропом в 1930 (пепсин). Впервые первичная структура (аминокислотная последовательность) ферментов была установлена У. Стейном и С. Муром в 1960 для рибонуклеазы А, а в 1969 P. Меррифилдом осуществлен хим. синтез этого фермента. Пространственное строение (третичная структура) ферментов впервые установлено Д. Филлипсом в 1965 для лизоцима. Во 2-й пол. 20 в. каталитич. активность была открыта также у нек-рых РНК (их наз. рибозимы).

Классификация ферментов. Исторически многим ферментам присваивались тривиальные названия, часто не связанные с типом катализируемой р-ции. Для преодоления возникших трудностей в сер. 20 в. были разработаны классификации и номенклатура ферментов. По рекомендации Международного биохим. союза, все ферменты в зависимости от типа катализируемой р-ции делят на 6 классов: 1-й - оксидоредуктазы, 2-й - трансферазы, 3-й - гидролазы, 4-й - лиазы, 5-й - изомеразы и 6-й - лигазы. Каждый класс делится на подклассы, в соответствии с природой функц. групп субстратов, подвергающихся хим. превращению. Подклассы, в свою очередь, делятся на подпод-классы в зависимости от типа участвующего в превращении фермента. Каждому достаточно охарактеризованному ферменту присваивается классификационный номер из 4 цифр, обозначающих класс, подкласс, подподкласс и номер самого ферменты Напр., a-химотрипсин имеет номер 3.4.21.1.

К оксидоредуктазам относятся ферменты, катализирующие окислит.-восстановит. р-ции. Ферменты этого типа переносят атомы H или электроны. Многие оксидоредуктазы являются ферментами дыхания и окислительного фосфорилирования.

Трансферазы катализируют перенос функц. групп (CH3, COOH, NH2, CHO и др.) от одной молекулы к другой.

Гидролазы катализируют гидролитич. расщепление связей (пептидной, гликозидной, эфирной, фосфодиэфирной и др·)·

Л и а з ы катализируют негидролитич. отщепление групп от субстрата с образованием двойной связи и обратные р-ции. Эти ферменты могут отщеплять CO2, H2O, NH3 и др.

Изомеразы катализируют образование изомеров субстрата, в т. ч. цис-, транс-изомеризацию, перемещение кратных связей, а также групп атомов внутри молекулы.

Л и г а з ы - ферменты, катализирующие присоединение двух молекул с образованием новых связей (С — С, С — S, С — О, С — N и др.), как правило, сопряженное с расщеплением пирофос-фатной связи, напр. у АТФ.

Особенности строения ферментов. Мол. масса ферментов составляет от 104 до 1010 и более. Чаще всего встречаются ферменты с мол. м. 20-60 тыс., более крупные обычно состоят из неск. одинаковых (гомомеры) или разных (гетеромеры) субьеди-ниц, связанных между собой нековалентными связями. Субъединица может состоять из двух и более цепей, соединенных дисульфидными связями.

В первичной структуре однотипных ферментов, выделенных даже из эволюционно отдаленных организмов, часто наблюдается определенная гомология, а нек-рые участки практически остаются неизменными. Вторичная структура отличается большим разнообразием по содержанию 5016-25.jpg-спиралей и 5016-26.jpg -структур (см. Белки). 5016-27.jpg-Структуры составляют ядро многих ферментов, образуя "опорную" структуру. Совокупность стандартных элементов вторичных структур и специфически уложенных участков полипептидной цепи, определенным образом расположенных в пространстве, образует третичную структуру, определяющую биол. св-ва ферментов.

Третичная структура уникальна для каждого фермента, однако у однотипных ферментов, даже сильно отличающихся по первичной структуре, пространственное расположение цепей м. б. сходным (напр., химотрипсины и субтилизины). Часто в третичной структуре можно выделить отдельные компактные части (домены), соединенные участками полипептидной цепи. Организация в пространстве неск. субъединиц определяет четвертичную структуру ферментов.

На пов-сти белковой глобулы фермента или, чаще, в спец. щели, углублении и т. п. выделяют относительно небольшой участок, наз. активным центром. Он представляет собой совокупность функц. групп аминокислотных остатков, непосредственно взаимодействующих с субстратом. В активный центр фермента, кроме функц. групп, могут входить небелковые составляющие - коферменты. Такой комплекс наз. х о л о -ферментом, а его белковую часть - апоферментом. Аминокислотные остатки, входящие в активный центр, относятся к наиб. консервативным в данной группе ферментов. В активном центре можно выделить субстрат-связывающий участок и собственно каталитически активные группы ферментов. К последним, напр., в подподклассе сериновых протеаз относятся функц. группы остатков серина-195, гистидина-57 и аспарагиновой к-ты-102. Кроме того, в качестве каталитически активных групп ферментов выступают группа SH цистеина, группа COOH глугаминовой к-ты, фенольный гидроксил тирозина и др., а также функц. группы коферментов - никотинамидное кольцо никотинамидных коферментов (см. Ниацин), альдегидная группа (в виде альдимина) пиридоксальфосфата, тиазолино-вое кольцо тиаминпирофосфата, ионы металлов (напр., Zn2+, Co2+, Mn2+) и др.

Получение ферментов. Обычно ферменты вьделяют из тканей животных, растений, клеток и культуральных жидкостей микроорганизмов, биол. жидкостей (кровь, лимфа и др.). Для получения нек-рых труднодоступных ферментов используются методы генетической инженерии. Из исходных материалов ферменты экстрагируют солевыми р-рами. Затем их разделяют на фракции, осаждая солями [обычно (NH4)2SO4] или, реже, орг. р-рителями, и очищают методами гель-проникающей и ионо-обменной хроматографии. На заключит. этапах очистки часто используют методы аффинной хроматографии. Контроль за ходом очистки ферментов и характеристику чистых препаратов осуществляют, измеряя каталитич. активность ферментов с применением специфических (обычно дающих цветные р-ции) субстратов. За единицу кол-ва фермента принимают такое его кол-во, к-рое катализирует превращение 1 мкмоля субстрата в 1 мин в стандартных условиях. Число единиц фермента, отнесенное к 1 мг белка, наз. удельной активностью.

Применение ферментов. В неочищенном состоянии ферменты с древнейших времен используют для получения продуктов питания и выделки изделий в хлебопечении, сыроделии, виноделии, обработке кож и т. д. Достаточно очищенные ферменты применяют в произ-ве аминокислот и их смесей для искусственного питания, в произ-ве сахарных сиропов из углеводсо-держащего сырья, для удаления лактозы из молока и в произ-ве ряда лек. ср-в (нек-рые очищенные ферменты сами используются как лек. ср-ва). Особенно перспективно применение в пром-сти иммобилизованных ферментов на полимерных носителях (напр., для получения полусинтетич. пеницилли-нов применяют иммобилизованную пенициллинамидазу, см. также Ферментсодержащие волокна). Об использовании ферментов в хим. анализе см. Ферментативные методы анализа.

Лит.: Номенклатура ферментов (Рекомендации 1972), пер. с англ., M., 1979; Фершт Э., Структура и механизм действия ферментов, пер. с англ., M., 1980; Диксон M., Уэбб Э., Ферменты, пер. с англ., т. 1-3, M., 1982; Methods in enzymology, eds. S. P. Colowick, N. O. Kaplan, N. Y.- S. F.- L., 1955.

В. К. Антонов.

Еще по теме:

Яндекс.Метрика


© ХиМиК.ру



Обратная связь / Реклама / Дизайн сайта