Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ДЫХАНИЕ

ДЫХАНИЕ, совокупность процессов, обеспечивающих поступление в организм атмосферного или растворенного в воде О2, использование его в окислит.-восстановит. р-циях, а также удаление из организма СО2 и нек-рых др. соед. - конечных продуктов обмена в-в. Играет фундам. роль в энергообеспечении и метаболизме у большинства организмов. При дыхании кислород участвует гл. обр. в окислении орг. соед. с образованием Н2О или Н2О2 (в нек-рых случаях - О2-) или включается в молекулу окисляемого в-ва. Нек-рые организмы (гл. обр. мн. бактерии) могут использовать в качестве акцептора электронов не только О2, но и др. соед. с высоким сродством к электрону, напр., нитраты и сульфаты. В этих случаях иногда говорят о "нитратном" и "сульфатном" дыхании в отличие от аэробного (кислородного) дыхания. У высших организмов дыхание - сложный комплекс физиол. и биохим. процессов, в к-ром можно выделить ряд осн. стадий: 1) внеш. дыхание поступление О2 из среды в организм, осуществляемое с помощью спец. органов дыхания (легких, жабр, трахей и т.д.) или через пов-сть тела (напр., у кишечно-полостных); 2) транспорт О2 от органов дыхания ко всем др. органам, тканям и клеткам у большинства животных эта ф-ция обеспечивается кровеносной системой при участии спец. белков - переносчиков кислорода (гемоглобин, миоглобин, гемоцианин и др.); 3) тканевое, или клеточное, дыхание - собственно биохим. процесс восстановления О2 в клетках при участии большого числа разных ферментов. Дыхание многих, в первую очередь одноклеточных, организмов сводится к клеточному дыханию, а стадии 1 и 2 обеспечиваются диффузией О2. В клеточном дыхании осн. часть потребления О2 аэробными организмами (их на Земле абс. большинство) связана с обеспечением клетки энергией в процессе окислительного фосфорилирования, к-рый у животных и растений осуществляется в спец. субклеточных структурах - митохондриях. В окружающей митохондрию бислойной фосфолипидной мембране находится система окислит.-восстановит. ферментов, наз. дыхательной или электронотранспортной цепью (см. рис.). Эта цепь катализирует перенос электронов (протонов) от ряда продуктов обмена в-в (т. наз. субстраты окисления) к О2. Окислит.-восстановит. потенциал субстратов окисления колеблется, как правило, от - 0,4 до 0 В. Наиб. важные субстраты окисления - в-ва, образующиеся при функционировании цикла трикарбоновых к-т (напр., янтарная к-та, восстановленный кофермент никотинамидадениндинуклеотидфосфат, жирные к-ты, нек-рые аминокислоты и продукты метаболизма углеводов). Б. ч. своб. энергии переноса электронов в дыхат. цепи трансформируется первоначально в энергию разности электрохим. потенциалов ионов Н+ (D m Н) на мембране митохондрий, к-рая далее используется для термодинамически невыгодного синтеза АТФ из аденозиндифосфата и неорг. фосфата при окислит. фосфорилировании.
121_140-1.jpg
Дыхат. цепь митохондрий. Схематически изображен фрагмент митохондриальной мембраны в разрезе. Заштрихован фосфолипидный бислой. Стрелками обозначен путь электронов от субстратов окисления к О2. Цитохромы b, с и с1 белки-переносчики электронов; в качестве простетич. группы содержат гем. Др. важная ф-ция клеточного дыхания - окислит. биосинтез большого числа нужных организму в-в. Так, напр., образование ненасыщ. жирных к-т из насыщенных, ключевые этапы синтеза простагландинов, стероидных и нек-рых пептидных гормонов, достройка поперечных сшивок между цепями коллагена в соединит. ткани идут в организме с потреблением О2. Высокая окислит. способность О2 используется в клеточном дыхании также для разрушения и детоксикации чужеродных вредных в-в и для деградации мн. подлежащих удалению продуктов собств. метаболизма (напр., окислит. распад аминокислот, пуриновых оснований). Особую роль в детоксикации гидрофобных орг. соед. играет электронотранспортная цепь микросом, представляющих собой фракцию мембранных пузырьков, к-рую получают при дифференц. центрифугировании клеточных гомогенатов; содержит фрагменты мембран эндоплазматич. сети, комплекса Гольджи и др. Ключевой компонент микросомальной системы детоксикации цитохром Р-450 (подобно монооксигеназам он катализирует р-цию 121_140-2.jpg , напр., гидроксилирование стероидов; второй атом О в молекуле О2 восстанавливается при этом до Н2О). Эта электронотранспортная цепь особенно активна в печени животных. В биохимии клеточного дыхания различают неск. осн. р-ций с участием О2: 1) катализируемое оксидазами ("аэробными гидрогеназами") четырехэлектронное восстановление О2 до Н2О или двухэлектронное до Н2О2:

2RH2 + O2 : 2R + 2Н2O; RH2 + O2 : R + H2O2

2) Включение обоих атомов О2 в молекулу окисляемого в-ва, катализируемое диоксигеназами (оксигеназами):

RH2 + O2 : R(OH)2

3) Включение одного из атомов О2 в молекулу окисляемого в-ва, др. атом О восстанавливается с образованием Н2О в результате окисления второго субстрата:

RH + R' Н2 + О2 : ROH + R' + Н2О

Ферменты, катализирующие эту р-цию, - монооксигеназы. В состав активных центров ферментов, взаимодействующих с О2, обычно входят ионы переходных металлов (медь, гемовое или негемовое железо) или флавины (коферментные формы витамина рибофлавина). Интенсивность дыхания организмов, тканей, клеток принято выражать в кол-ве О2, потребляемого за единицу времени на единицу массы (напр., в мг О2.мин-1 г-1). Важный показатель интенсивности дыхания высших позвоночных - кол-во воздуха, вентилируемого легкими в 1 мин (наз. минутным объемом дыхания, или МОД). Эти величины служат важнейшим показателем уровня энергетич. обмена организма. У человека МОД в состоянии покоя составляет 5-8 л/мин, во время физич. работы - до 100 и более л/мин. Соед., подавляющие дыхание (дыхат. яды), выключают энергообеспечение организма и потому являются быстродействующими ядами. Классич. дыхат. яды (цианиды, изоцианиды, сульфиды, азиды, СО и NO) угнетают концевой фермент дыхат. цепи митохондрий (цитохром-с-оксидазу). Эти же соед. угнетают транспорт О2 по организму, связываясь с гемоглобином. Др. важный класс дыхат. ядов - гидрофобные орг. в-ва, часто хиноидной природы, выступающие как антагонисты убихинона (замещенного 1,4-бензохинона), играющего ключевую роль во мн. стадиях переноса электронов по дыхат. цепи. Сильнейшие яды этого класса - токсич. антибиотики (ротенон, пирицидин, антимицин, миксотиазол), 2-гептил-4-гидроксихинолин-N-оксид; их используют в исследованиях тканевого дыхания. Способность к умеренному подавлению убихинон-зависимых р-ций в дыхат. цепи свойственна мн. лек. ср-вам (напр., барбитуратам), фунгицидам и пестицидам. Лит. Рэкер Э., Биоэнергетические механизмы: новые взгляды, пер. с англ., М.. 1979; Мецлер Д., Биохимия, пер. с англ.. т 2. М.. 1980. с. 361 445: Константинов А. С., Общая гидробиология, 4 изд., М., 1986. гл. 6; Скулачев В. П., Энергетика биологических мембран. М.. 1988; Molecular mechanisms of oxygen activation, N.Y., 1974; Wikstrdm M., Saraste M., The mitochondrial respiratory chain, в сб. Bioenergetics. Amst, 1984. p. 49-94. А. А. Константинов.


===
Исп. литература для статьи «ДЫХАНИЕ»: нет данных

Страница «ДЫХАНИЕ» подготовлена по материалам химической энциклопедии.

Еще по теме:

     © ХиМиК.ру




Реклама   Обратная связь   Дизайн