Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий
Система Orphus

УГЛЕРОД

УГЛЕРОД (Carboneum) C, хим. элемент IV гр. периодич. системы, ат. н. 6, ат.м. 12.011. Природный углерод состоит из двух стабильных изотопов - 12C (98,892%) и 13C (1,108%). Сечение захвата тепловых нейтронов 3,5·10-31 м2. В атмосфере присутствует радиоактивный нуклид 14C. Он постоянно образуется в ниж. слоях стратосферы в результате воздействия нейтронов космич. излучения на ядра азота по р-ции: 14N (n, р)14C. Конфигурация внеш. электронной оболочки атома углерода 2s22p2; степени окисления +4, - 4, редко +2 (СО, карбонилы металлов), +3 (C2N2, галоген-цианы); сродство к электрону 1,27 эВ; энергий ионизации при последоват. переходе от С° к C4+ соотв. 11,26040, 24,383, 47,871 и 64,19 эВ; электроотрицательность по Полингу 2,5; атомный радиус 0,077 нм, ионный радиус C4+ (в скобках даны координац. числа) 0,029 нм (4), 0,030 нм (6).

Содержание углерода в земной коре 0,48% по массе. Свободный углерод находится в природе в виде алмаза и графита. Осн. масса углерода встречается в виде карбонатов природных (известняки и доломиты), горючих ископаемых - антрацит (94-97% С), бурые угли (64-80% С), каменные угли (76-95% С), горючие сланцы (56-78% С), нефть (82-87% С), газы природные горючие (до 99% CH4), торф (53-62% С), а также битумы и др. В атмосфере и гидросфере углерод находится в виде углерода диоксида CO2, в воздухе 0,046% CO2 по массе, в водах рек, морей и океанов в ~ 60 раз больше. Углерод входит в состав растений и животных (~18%). Кругооборот углерода в природе включает биол. цикл, выделение CO2 в атмосферу при сгорании ископаемого топлива, из вулканич. газов, горячих минер. источников, из поверхностных слоев океанич. вод и др. Биол. цикл состоит в том, что углерод в виде CO2 поглощается из тропосферы растениями, затем из биосферы вновь возвращается в геосферу: с растениями углерод попадает в организм животных и человека, а затем при гниении животных и растит, материалов - в почву и в виде CO2 - в атмосферу.

В парообразном состоянии и в виде соед. с азотом и водородом углерод обнаружен в атмосфере Солнца, планет, он найден в каменных и железных метеоритах.

Большинство соединений углерода, и прежде всего углеводороды, обладают ярко выраженным характером ковалентных соединений. Прочность простых, двойных и тройных связей атомов углерода между собой, способность образовывать устойчивые цепи и циклы из атомов С обусловливают существование огромного числа углеродсодержащих соед., изучаемых органической химией.

Свойства. Основные и хорошо изученные кристаллич. модификации углерода- алмаз и графит. При нормальных условиях термодинамически устойчив только графит, а алмаз и др. формы метастабильны. При атм. давлении и т-ре выше 1200 К алмаз начинает переходить в графит, выше 2100 К превращение совершается за секунды; DH° перехода -1,898 кДж/моль. При нормальном давлении углерод сублимируется при 3780 К. Жидкий углерод существует только при определенном внеш. давлении. Тройные точки: графит - жидкость -пар T =4130 К, р=12 МПа; графит - жидкость - алмаз T=4100, p =12,5 ГПа. Прямой переход графита в алмаз происходит при 3000 К и давлении 11-12 ГПа.

При давлениях выше 60 ГПа предполагают образование весьма плотной модификации углерода III (плотность на 15-20% выше плотности алмаза), имеющей металлич. проводимость. При высоких давлениях и относительно низких т-рах (ок. 1200 К) из высокоориентир. графита образуется гексагон. модификация углерода с кристаллич. решеткой типа вюрцита -лонсдейлит (а = 0,252 HM, с =0,412 нм, пространств. группа Р63/ттс), плотн. 3,51 г/см3, т. е. такая же, как у алмаза. Лонсдейлит найден также в метеоритах.

Кристаллич. модификация углерода гексагон, сингонии с цепочечным строением молекул наз. к а р б и н. Цепи имеют либо полииновое строение 5005-1.jpg , либо поликумуленовое 5005-2.jpg . Известно неск. форм карбина, отличающихся числом атомов в элементарной ячейке, размерами ячеек и плотностью (2,68-3,30 г/см3). Карбин встречается в природе в виде минерала чаоита (белые прожилки и вкрапления в графите) и получен искусственно - окислит, дегидрополи-конденсацией ацетилена, действием лазерного излучения на графит, из углеводородов или CCl4 в низкотемпературной плазме.

В основе строения аморфного углерода лежит разупорядоченная структура мелкокристаллич. (всегда содержит примеси) графита. Это кокс (см. Кокс каменноугольный, Кокс нефтяной, Кокс пековый), бурые и каменные угли, сажа (см. Технический углерод), активный уголь. Углерод известен также в виде кластерных частиц C60 и C70 (фуллерены).

При обычных т-рах углерод химически инертен, при достаточно высоких соединяется со мн. элементами, проявляет сильные восстановит. св-ва. Хим. активность разных форм углерода убывает в ряду: аморфный углерод, графит, алмаз, на воздухе они воспламеняются при т-рах соотв. выше 300-500 0C, 600-700 0C и 850-1000 0C. Продукты горения - углерода оксид СО и диоксид CO2. Известны также неустойчивый оксид C3O2 (т. пл. -111 0C, т. кип. 7 0C) и нек-рые др. оксиды. Графит и аморфный углерод начинают реагировать с H2 при 1200 0C, с F2 - соотв. выше 900 0C и при комнатной т-ре. Графит с галогенами, щелочными металлами и др. в-вами образует соединения включения (см. Графита соединения). При пропускании электрич. разряда между угольными электродами в среде N2 образуется циан, при высоких т-рах взаимодействием углерода со смесью H2 и N2 получают синильную кислоту. С серой углерод дает сероуглерод CS2, известны также CS и C3S2. С большинством металлов, В и Si углерод образует карбиды. Важна в пром-сти р-ция углерода с водяным паром С + H2O5005-3.jpg СО + H2 (см. Газификация твердых топлив). При нагревании углерод восстанавливает оксиды металлов до металлов, что широко используется в металлургии.

О применении углерода см. вышеперечисл. статьи, а также см. Углеграфитовые материалы, Углепластики и др.

Углерод входит в состав атм. аэрозолей, в результате чего может изменяться региональный климат, уменьшаться кол-во солнечных дней. Частицы углерода поглощают солнечное излучение, что может вызвать нагревание пов-сти Земли. Углерод поступает в окружающую среду в виде сажи в составе выхлопных газов автотранспорта, при сжигании угля на ТЭС, при открытых разработках угля, подземной его газификации, получении угольных концентратов и др. Концентрация углерода над источниками горения 100-400 мкг/м3, крупными городами 2,4-15,9 мкг/м3, сельскими р-нами 0,5-0,8 мкг/м3. С газоаэрозольными выбросами АЭС в атмосферу поступает (6-15)·109 Бк/сут 14CO2.

Высокое содержание углерода в атм. аэрозолях ведет к повышению заболеваемости населения, особенно верх. дыхат. путей и легких. Проф. заболевания - в осн. антракоз и пылевой бронхит. В воздухе рабочей зоны ПДК, мг/м3: алмаз 8,0, антрацит и кокс 6,0, каменный уголь 10,0, технический углерод и углеродная пыль 4,0; в атм. воздухе для сажи макс, разовая 0,15, среднесуточная 0,05 мг/м3.

Токсич. действие 14C, вошедшего в состав молекул белков (особенно в ДНК и РНК), определяется радиац. воздействием b-частиц и ядер отдачи азота 5005-4.jpg и трансмутац. эффектом - изменением хим. состава молекулы в результате превращения атома С в атом N. Допустимая концентрация 14C в воздухе рабочей зоны ДКА 1,3 Бк/л, в атм. воздухе ДКБ 4,4 Бк/л, в воде 3,0·104 Бк/л, предельно допустимое поступление через органы дыхания 3,2· 108 Бк/год.

Углерод в виде древесного угля применялся в глубокой древности для выплавки металлов. Издавна известны алмаз и графит.

Элементарная природа углерода установлена А. Лавуазье в кон. 1780-х гг.

Лит.: Химия гиперкоординированного углерода, пер. с англ., M., 199O, Kirk - Othmer encyclopedia, 3 ed., v. 4, N. Y., 1978, p. 556-709.

Я. А. Калашников.

Еще по теме:

Яндекс.Метрика


© ХиМиК.ру



Обратная связь / Дизайн сайта