Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


АТОМ

АТОМ (от греч. atomos - неделимый), наименьшая частица хим. элемента, носитель его св-в. Каждому хим. элементу соответствует совокупность определенных атомов. Связываясь друг с другом, атомы одного или разных элементов образуют более сложные частицы, напр. молекулы. Все многообразие хим. в-в (твердых, жидких и газообразных) обусловлено разл. сочетаниями атомов между собой. Атомы могут существовать и в своб. состоянии (в газе, плазме). Св-ва атома, в т. ч. важнейшая для химии способность атома образовывать хим. соед., определяются особенностями его строения.

Общая характеристика строения атома. Атом состоит из положительно заряженного ядра, окруженного облаком отрицательно заряженных электронов. Размеры атома в целом определяются размерами его электронного облака и велики по сравнению с размерами _ядра атома (линейные размеры атома ~ 10~8см, его ядра ~ 10" -10" 13 см). Электронное облако атома не имеет строго определенных границ, поэтому размеры атома в значит. степени условны и зависят от способов их определения (см. Атомные радиусы). Ядро атома состоит из Z протонов и N нейтронов, удерживаемых ядерными силами (см. Ядро атомное). Положит. заряд протона и отрицат. заряд электрона одинаковы по абс. величине и равны е= 1,60*10-19 Кл; нейтрон не обладает элек-трич. зарядом. Заряд ядра +Ze - осн. характеристика атома, обусловливающая его принадлежность к определенному хим. элементу. Порядковый номер элемента в периодич. системе Менделеева (атомный номер) равен числу протонов в ядре.

В электрически нейтральном атоме число электронов в облаке равно числу протонов в ядре. Однако при определенных условиях он может терять или присоединять электроны, превращаясь соотв. в положит. или отрицат. ион, напр. Li+, Li2+ или О-, О2-. Говоря об атомах определенного элемента, подразумевают как нейтральные атомы, так и ионы этого элемента.

Масса атома определяется массой его ядра; масса электрона (1041-10.jpg9,109*10-28 г) примерно в 1840 раз меньше массы протона или нейтрона (1041-11.jpg 1,67*10-24 г), поэтому вклад электронов в массу атома незначителен. Общее число протонов и нейтронов А = Z + N наз. массовым числом. Массовое число и заряд ядра указываются соотв. верхним и нижним индексами слева от символа элемента, напр. 2311Na. Вид атомов одного элемента с определенным значением N наз. нуклидом. Атомы одного и того же элемента с одинаковыми Z и разными N наз. изотопами этого элемента. Различие масс изотопов мало сказывается на их хим. и физ. св-вах. Наиболее значит, отличия (изотопные эффекты)наблюдаются у изотопов водорода вследствие большой относит. разницы в массах обычного атома1041-12.jpg (протия), дейтерия D1041-13.jpg и трития Т1041-14.jpg. Точные значения масс атомов определяют методами масс-спектрометрии.

Квантовые состояния атома. Благодаря малым размерам и большой массе ядро атома можно приближенно считать точечным и покоящимся в центре масс атома и рассматривать атом как систему электронов, движущихся вокруг неподвижного центра - ядра. Полная энергия такой системы Е равна сумме кинетич. энергий Т всех электронов и потенциальной энергии U, к-рая складывается из энергии притяжения электронов ядром и энергии взаимного отталкивания электронов друг от друга. Атом подчиняется законам квантовой механики; его осн. характеристика как квантовой системы - полная энергия Е - может принимать лишь одно из значений дискретного ряда Е1 < Е2 < Е3 < ...; промежут. значениями энергии атом обладать не может. Каждому из "разрешенных" значений Е соответствует одно или неск. стационарных (с не изменяющейся во времени энергией) состояний атома. Энергия Е может изменяться только скачкообразно - путем квантового перехода атома из одного стационарного состояния в другое. Методами квантовой механики можно точно рассчитать Е для одноэлектронных атомов - водорода и водородоподобных: Е= —hcRZ2/n2, где h - постоянная Планка, с-скорость света, целое число п = 1, 2, 3, ... определяет дискретные значения энергии и наз. главным квантовым числом; R-постоянная Ридберга (hcR = 13,6 эВ). При использовании СИ ф-ла для выражения дискретных уровней энергии одноэлектронных атомов записывается в виде:
1041-15.jpg

где те- масса электрона,1041-16.jpg-электрич. постоянная,1041-17.jpg Возможные "разрешенные" значения энергии электронов в атоме изображают в виде схемы уровней энергии - горизонтальных прямых, расстояния между к-рыми соответствуют разностям этих значений энергий (рис. 1). наиб. низкий уровень E1, отвечающий минимально возможной энергии, наз. основным, все остальные - возбужденными. Аналогично наз. состояния (основное и возбужденныеХ к-рым соответствуют указанные уровни энергии. С ростом п уровни сближаются и при1041-18.jpg энергия электрона приближается к значению, отвечающему своб. (покоящемуся) электрону, удаленному из атома. Квантовое состояние атома с энергией Е полностью описывается волновой ф-цией1041-19.jpg, где r-радиус-вектор электрона относительно ядра. Произведение1041-20.jpg равно вероятности нахождения электрона в объеме dV, то есть1041-21.jpg -плотность вероятности (электронная плотность). Волновая ф-ция1041-22.jpg определяется уравнением Шрёдингера1041-23.jpg=1041-24.jpg, где R-оператор полной энергии (гамильтониан).

Наряду с энергией движение электрона вокруг ядра (орбитальное движение) характеризуется орбитальным моментом импульса (орбитальным мех. моментом) М1; квадрат его величины может принимать значения, определяемые орбитальным квантовым числом l = 0, 1, 2, ...;1041-25.jpg , где1041-26.jpg . При заданном и квантовое число l может принимать значения от 0 до (и — 1). Проекция орбитального момента на нек-рую ось z также принимает дискретный ряд значений Мlz =1041-27.jpg, где ml-магнитное квантовое число, имеющее дискретные значения от — l до +l(-l,... - 1, О, 1, ... + l), всего 2l + 1 значений. Ось z для атома в отсутствие внеш. сил выбирается произвольно, а в магн. поле совпадает с направлением вектора напряженности поля. Электрон обладает также собственным моментом импульса -спином и связанным с ним спиновым магн. моментом. Квадрат спинового мех. момента МS2 =1041-28.jpgS(S + + 1) определяется спиновым квантовым числом S = 1/2, а проекция этого момента на ось z Msz = =1041-29.jpg-квантовым числом ms, принимающим полуцелые значения ms=1/2 и ms = -1/2.
Уровни энергии атома водорода

Рис. 1. Схема уровней энергии атома водорода (горизонтальные линии) и оптич. переходов (вертикальные линии). Внизу изображена часть атомного спектра испускания водорода - две серии спектральных линий; пунктиром показано соответствие линий и переходов электрона.

Стационарное состояние одноэлектронного атома однозначно характеризуется четырьмя квантовыми числами: п, l, ml и ms. Энергия атома водорода зависит только от п, и уровню с заданным п соответствует ряд состояний, отличающихся значениями l, ml, ms. Состояния с заданными п и l принято обозначать как 1s, 2s, 2p, 3s и т.д., где цифры указывают значения л, а буквы s, p, d, f и дальше по латинскому алфавиту соответствуют значениям д = 0, 1, 2, 3, ... Число разл. состояний с заданными п и д равно 2(2l+ 1) числу комбинаций значений ml и ms. Общее число разл. состояний с заданным п равно1041-31.jpg , т. е. уровням со значениями п = 1, 2, 3, ... соответствуют 2, 8, 18, ..., 2n2 разл. квантовых состояний. Уровень, к-рому соответствует лишь одно квантовое состояние (одна волновая ф-ция), наз. невырожденным. Если уровню соответствует два или более квантовых состояний, он наз. вырожденным (см. Вырождение энергетических уровней). В атоме водорода уровни энергии вырождены по значениям l и ml; вырождение по ms имеет место лишь приближенно, если не учитывать взаимод. спинового магн. момента электрона с магн. полем, обусловленным орбитальным движением электрона в электрич. поле ядра (см. Спин-орбитальное взаимодействие). Это - релятивистский эффект, малый в сравнении с кулоновским взаимод., однако он принципиально существен, т.к. приводит к дополнит. расщеплению уровней энергии, что проявляется в атомных спектрах в виде т. наз. тонкой структуры.

При заданных n, l и ml квадрат модуля волновой ф-ции1041-32.jpg определяет для электронного облака в атоме среднее распределение электронной плотности. Разл. квантовые состояния атома водорода существенно отличаются друг от друга распределением электронной плотности (рис. 2). Так, при l = 0 (s-состояния) электронная плотность отлична от нуля в центре атома и не зависит от направления (т.е. сферически симметрична), для остальных состояний она равна нулю в центре атома и зависит от направления.
Форма электронных облаков атома водорода

Рис. 2. Форма электронных облаков для различных состояний атома водорода.

В многоэлектронных атомах вследствие взаимного электростатич. отталкивания электронов существенно уменьшается прочность их связи с ядром. Напр., энергия отрыва электрона от иона Не+ равна 54,4 эВ, в нейтральном атоме Не она значительно меньше - 24,6 эВ. Для более тяжелых атомов связь внеш. электронов с ядром еще слабее. Важную роль в многоэлектронных атомах играет специфич. обменное взаимодействие, связанное с неразличимостью электронов, и тот факт, что электроны подчиняются Паули принципу, согласно к-рому в каждом квантовом состоянии, характеризуемом четырьмя квантовыми числами, не может находиться более одного электрона. Для многоэлектронного атома имеет смысл говорить только о квантовых состояниях всего атома в целом. Однако приближенно, в т. наз. одноэлектронном приближении, можно рассматривать квантовые состояния отдельных электронов и характеризовать каждое одноэлектронное состояние (определенную орбиталъ, описываемую соответствующей ф-цией) совокупностью четырех квантовых чисел n, l, ml и ms. Совокупность 2(2l+ 1) электронов в состоянии с данными п и l образует электронную оболочку (наз. также подуровнем, подоболочкой); если все эти состояния заняты электронами, оболочка наз. заполненной (замкнутой). Совокупность 2п2 состояний с одним и тем же n, но разными l образует электронный слой (наз. также уровнем, оболочкой). Для п= 1, 2, 3, 4, ... слои обозначают символами К, L, M, N, ... Число электронов в оболочках и слоях при полном заполнении приведены в таблице:
1041-34.jpg

Прочность связи электрона в атоме, т. е. энергия, к-рую необходимо сообщить электрону, чтобы удалить его из атома, уменьшается с увеличением п, а при данном п - с увеличением l. Порядок заполнения электронами оболочек и слоев в сложном атоме определяет его электронную конфигурацию, т.е. распределение электронов по оболочкам в основном (невозбужденном) состоянии этого атома и его ионов. При таком заполнении последовательно связываются электроны с возрастающими значениями и и /. Напр., для атома азота (Z = 7) и его ионов N+, N2+, N3+, N4+, N5+ и N6+ электронные конфигурации имеют вид соотв.: Is22s22p3; Is22s22p2; Is22s22p; Is22s2; Is22s; Is2; Is (число электронов в каждой оболочке указывается индексом справа сверху). Такие же электронные конфигурации, как и у ионов азота, имеют нейтральные атомы элементов с тем же числом электронов: С, В, Be, Li, He, Н (Z = 6, 5, 4, 3, 2, 1). Начиная с n = 4 порядок заполнения оболочек изменяется: электроны с большим п, но меньшим l оказываются связанными прочнее, чем электроны с меньшим п и большим l (правило Клечковского), напр. 4s-электроны связаны прочнее 3d-электронов, и сперва заполняется оболочка 4s, а затем 3d. При заполнении оболочек 3d, 4d, 5d получаются группы соответствующих переходных элементов; при заполнении 4f- и 5f-оболочек - соотв. лантаноиды и актиноиды. Порядок заполнения обычно соответствует возрастанию суммы квантовых чисел (п + l); при равенстве этих сумм для двух или более оболочек сначала заполняются оболочки с меньшим и. Имеет место след. последовательность заполнения электронных оболочек:
Последовательность заполнения электронных оболочек

Для каждого периода указаны электронная конфигурация благородного газа, макс. число электронов, а в последней строке приведены значения п + l. Имеются, однако, отступления от этого порядка заполнения (подробнее о заполнении оболочек см. Периодическая система химических элементов).

Между стационарными состояниями в атоме возможны квантовые переходы. При переходе с более высокого уровня энергии Еi на более низкий Ek атом отдает энергию (Ei — Ek), при обратном переходе получает ее. При излучательных переходах атом испускает или поглощает квант электромагн. излучения (фотон). Возможны и безызлучательные переходы, когда атом отдает или получает энергию при взаимод. с др. частицами, с к-рыми он сталкивается (напр., в газах) или длительно связан (в молекулах, жидкостях и твердых телах). В атомарных газах в результате столкновения своб. атома с др. частицей он может перейти на др. уровень энергии - испытать неупругое столкновение; при упругом столкновении изменяется лишь кинетич. энергия постулат. движения атома, а его полная внутр. энергия Е остается неизменной. Неупругое столкновение своб. атома с быстро движущимся электроном, отдающим этому атому свою кинетич. энергию, - возбуждение атома электронным ударом - один из методов определения уровней энергии атома.

Строение атома и свойства веществ. Хим. св-ва определяются строением внеш. электронных оболочек атомов, в к-рых электроны связаны сравнительно слабо (энергии связи от неск. эВ до неск. десятков эВ). Строение внеш. оболочек атомов хим. элементов одной группы (или подгруппы) периодич. системы аналогично, что и обусловливает сходство хим. св-в этих элементов. При увеличении числа электронов в заполняющейся оболочке их энергия связи, как правило, увеличивается; наиб. энергией связи обладают электроны в замкнутой оболочке. Поэтому атомы с одним или неск. электронами в частично заполненной внеш. оболочке отдают их в хим. р-циях. Атомы, к-рым не хватает одного или неск. электронов для образования замкнутой внеш. оболочки, обычно принимают их. Атомы благородных газов, обладающие замкнутыми внеш. оболочками, при обычных условиях не вступают в хим. р-ции.

Строение внутр. оболочек атомов, электроны к-рых связаны гораздо прочнее (энергия связи 102-104 эВ), проявляется лишь при взаимод. атомов с быстрыми частицами и фотонами высоких энергий. Такие взаимод. определяют характер рентгеновских спектров и рассеяние частиц (электронов, нейтронов) на атомах (см. Дифракционные методы). Масса атома определяет такие его физ. св-ва, как импульс, кинетич. энергия. От механических и связанных с ними магн. и электрич. моментов ядра атома зависят нек-рые тонкие физ. эффекты (ЯМР, ЯКР, сверхтонкая структура спектральных линий, см Спектроскопия).

Более слабые по сравнению с хим. связью электростатич. взаимод. двух атомов проявляются в их взаимной поляризуемости - смещении электронов относительно ядер и возникновении поляризац. сил притяжения между атомами (см. Межмолекулярные взаимодействия). Атом поляризуется и во внеш. электрич. полях; в результате уровни энергии смещаются и, что особенно важно, вырожденные уровни расщепляются (см. Штарка эффект). Атом может поляризоваться также под действием электрич. поля волны электромагн. излучения; поляризация зависит от частоты излучения, что обусловливает зависимость от нее показателя преломления в-ва, связанного с поляризуемостью атома. Тесная связь оптич. св-в атома с его электрич. св-вами особенно ярко проявляется в оптич. спектрах.

Внеш. электроны атома определяют и магн. св-ва в-ва. В атоме с заполненными внеш. оболочками его магн. момент, как и полный момент импульса (мех. момент), равен нулю. Атом с частично заполненными внеш. оболочками обладают, как правило, постоянными магн. моментами, отличными от нуля; такие в-ва парамагнитны (см. Парамагнетики). Во внеш. магн. поле все уровни энергии атомов, для к-рых магн. момент не равен нулю, расщепляются (см. Зеемана эффект). Все атомы обладают диамагнетизмом, к-рый обусловлен возникновением у них индуцированного магн. момента под действием внеш. магн. поля (см. Диэлектрики).

Св-ва атома, находящегося в связанном состоянии (напр., входящего в состав молекул), отличаются от св-в своб. атома. Наиб. изменения претерпевают св-ва, определяемые внеш. электронами, принимающими участие в хим. связи; св-ва, определяемые электронами внутр. оболочек, могут при этом практически не изменяться. Нек-рые св-ва атома могут испытывать изменения, зависящие от симметрии окружения данного атома. Примером может служить расщепление уровней энергии атомов в кристаллах и комплексных соед., к-рое происходит под действием электрич. полей, создаваемых окружающими ионами или лигандами.


===
Исп. литература для статьи «АТОМ»: Карапетьянц М. X., Дракин С.И., Строение вещества, 3 изд., М., 1978; Шло лье кий Э. В., Атомная физика, 7 изд., т. 1-2, М., 1984. М. А. Ельяшевич.

Страница «АТОМ» подготовлена по материалам химической энциклопедии.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн