Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ТРИТИЙ

ТРИТИЙ (от греч. tritos - третий) T, или 31H, радиоактивный тяжелый изотоп водорода с мас. ч. 3. Ядро атома трития- тритон с массой 3,016050 состоит из одного протона и двух нейтронов, энергия связи 8,1-8,4 МэВ. При b-распаде трития образуется легкий изотоп гелия: 5001-15.jpg Т1/2 12,33 года; макс. энергия излучения 18,61 кэВ, средняя - 5,54 кэВ. Уд. активность трития 3,59 · 105 ГБк/г. При взаимод.5001-16.jpg-частиц трития с в-вом возникает тормозное фотонное излучение, к-рое используют для количеств. определения трития в разл. средах.

Молекула трития двухатомна, мол. м. 6,03210; основная частота колебаний атомов 2548,36 см-1; константа диссоциации 5001-17.jpg (293,15 К), где p - давление. С др. изотопами водорода тритий образует молекулы прототри-тия HT с мол.м. 4,02395 и дейтеротрития DT с мол. м. 5,03015. Молекулярный тритий может находиться в орто-и пара-состояниях (соотв. о-Т2 и п-Т2). При обычных условиях газообразный T2 представляет собой смесь 75% орто- и 25% пара-модификаций (нормальный тритий, н-T2). Равновесный тритий (р-Т2), имеющий равновесный орто-пара-состав при данной т-ре, содержит п-T2, (%): 97,243 (10 К), 66,453 (20 К), 43,493 (30 К), 33,35 (40 К), 28,789 (50 К), 25,075 (100 К). Энтальпия орто-пара-превращения н-T2 в р-Т2 составляет -195,94 при 20 К и -11,51 Дж/моль при 50 К.

Тритий образуется в верх. слоях атмосферы в результате взаимод. космич. излучения гл. обр. с ядрами N и O, напр.: 5001-18.jpg . Образующиеся таким образом атомы трития в результате р-ций радиац. окисления и изотопного обмена переходят в молекулы воды, затем тритий в составе дождевой воды выпадает на пов-сть Земли. По совр. оценкам, равновесная активность космогенного трития во внеш. среде (гидросфере и атмосфере) составляет (1,11-1,30)·109 ГБк (3,0-3,5 кг). Считают, что ок. 90% природного трития содержится в гидросфере (гл. обр. в виде НТО), 10% в стратосфере (НТО) и 0,1% и тропосфере (из них 50% в виде HT).

Большое кол-во трития образуется при ядерных и, гл. обр., термоядерных взрывах. Взрыв водородной бомбы с тротиловым эквивалентом 1 MT приводит к выделению (2,6-7,4)*108 ГБк трития. С начала испытания термоядерного оружия (1954) содержание трития в дождевой воде возросло с 0,5-5,0 до 500 Т.E.: Т.E. - тритиевая единица, равная отношению числа атомов Т/Н = 10-18, или 0,12 Бк на 1 л воды. При подземных ядерных взрывах тритий также превращ. в оксид и частично выходит на пов-cть. По оценкам (1970), общее содержание трития в биосфере: в мировом океане 250 кг, в континентальных водах 45 кг, в воздухе 3 кг.

Свойства. Нек-рые св-ва трития приведены в табл. 1. Ур-ние температурной зависимости давления насыщ. пара жидкого н-Т2 в интервале 25-40 К: 5001-22.jpg (гПа) = 6,158 +78,925/T+2*10-4(T-25)2.

Tабл. 1. - СВОЙСТВА HT, DT и н-Т2

Показатель

HT

DT

н-T2

tкрит, K

37,13

39,42

40,44

5001-19.jpg МПа

1,571

1,773

1,850

17,62

19.71

20,62

Т. кип., К

22,92

24,38

25,04

AHисп при т. кип., Дж/моль



1394

Плотн. жидкости (кг/м3) вдоль линии насыщения:




21 К

162.8

220,7

272,2

23 К

157,S

214,6

265,0

25 К

152,3

208.1

257,3

5001-20.jpg




21 К

3,035

3,793

4,181

23 К

2,607

3,327

3,694

25 К

2,180

2,860

3,207

5001-21.jpg

29,198

29,195

29,199


Давление пара HT м. б. вычислено по ф-ле: 5001-23.jpg аналогично принято, что 5001-24.jpg Коэф. диффузии HT в жидком H2 м.б. вычислен по ур-нию D = 3,05*10-4exp(-36/T). Идеальный коэф. разделения изотопов водорода при равновесии жидкость-пар5001-25.jpg(см. табл. 2). Эксперим. коэф. разделения смесей D2-DT и D2-T2 на 5-6% ниже5001-26.jpg Р-ции изотопного обмена водорода 5001-27.jpg и5001-28.jpg (константы равновесия при 298,15 К равны соотв. 2,57 и 3,82) протекают вследствие выделения энергии при радиоактивном распаде трития, скорость их зависит от концентрации трития, а также от присутствия
катализаторов. Тритий окисляется O2 при обычной т-ре и без катализаторов вследствие5001-29.jpg-распада.

Табл.2.- ЗНАЧЕНИЯ 5001-30.jpg

Т-ра, К

5001-31.jpg

5001-32.jpg

5001-33.jpg

5001-34.jpg

21,0 22,0 23,0 24,0

2,19 2,06 1,95 1,86

2,18 2,05 1,94
1,85

1,30 1,27 1,25 1,23

1,690 1,613 1,563 1,513

Оксиды трития T2O (мол.м. 22,03150), прототрития НТО (20,02335) и дейтеротрития DTO (21,02955) имеют уд. активность соотв. 98050, 53650 и 51430 ГБк/г. Для T2O т. кип. 274,70 К, т-ра тройной точки 277,64 К; плотн. 1,21459 г/см3 (293,15 К), макс. плотн. 1,21502 (286,55 К); отношение значений давления паров H2O и T2O в интервале 264-387 К: 5001-35.jpg = -103,87/Т+ 46480/Т2.

Давление пара НТО5001-36.jpg Коэф. разделения жидкость - пар (относит, летучесть 5001-37.jpg) р-ров DTO в D2О в интервале 313,15-373,15 К: 5001-38.jpg=8,026/7+0,0198. Коэф. диффузии2/с) при 298,15 К: НТО в H2O 2,236-10-9, DTO в D2O 1,849*10-9, DTO в НТО 2,029*10-9.

Константы равновесия К изотопного обмена H2O+5001-39.jpg и D2O +5001-40.jpg при 300 К соотв. равны 3,699 и 3,972. Образование НТО может происходить при изотопном обмене 5001-41.jpg, К = 6.31 (300 К).

В результате радиоактивного распада трития в его соед. имеют место радиац. эффекты. Вода, содержащая тритий, подвергается радиолизу с образованием H2 и H2O2. Вода, содержащая 100% трития, разлагается на 50% через 5,24 сут. Рекомендуемая Международной комиссией радиологич. зашиты условная граница допустимого содержания трития в воде (при к-ром практически не наблюдается ее саморазложение) 3,7*103 ГБк/л.

Тритиды подобны гидридам (незначит. отличия проявляются в таких св-вах, как плотность и параметры кристаллич.решетки): получают их теми же методами, что и гидриды. Наиб. важны LiT (Li2DT), TiT2, ZrT2, UT3. Обьем (см3) T2, связываемого 1 г металла: Li 1,6*103, Ti 4,7*102, Zr2,5-102, U 1,4*102. В любом водородсодержащем соед. замещение одного атома H на атом T приводит к образованию соед. с уд. активностью 107,7-104 ГБк/моль.

Получение. В пром. масштабе тритий получают в ядерном реакторе, облучая Li, чаще всею обогащенный изотопом 6Li, нейтронами: 5001-42.jpg . Продукт естеств. распада трития- 3Не - также вступает в ядерную р-цию, превращаясь в тритий и протий: 5001-43.jpg. Получение трития включает подготовку материала к облучению, проведение облучения и накопление трития в материале, выделение, очистку и концентрирование, при этом используют методы термодиффузии и низкотемпературной ректификации. Тритий может быть также получен выделением и концентрированием при изотопной очистке тяжелой воды - замедлителя ядерных реакторов. Этим путем на установке в Гренобле (Франция) получают 8,88-106 ГБк в год 98%-ного трития. Установка TRF (Tritium Removal Facility) в Канаде, рассчитанная на переработку 350 кг/ч D2O тяжеловодных реакторов, по аналогичной технологии позволяет получать ок. 109 ГБк в год трития чистотой не менее 99%. Хранить тритий можно в виде тритидов.

Применение. Тритий- компонент топлива для термоядерного синтеза: 5001-44.jpg МэВ: радиоактивный изотопный индикатор в химии, биологии, медицине, геофизике, гидрогеологии и др. В виде тритиевых мишеней (тритиды U, Ti, Zr, интерметаллиды) используется в генераторах нейтронов, детекторах для газо-жидкостной хроматографии, в качестве радиоактивных источников излучения для флюорографии, в толщиномерах и т.д. Тритий применяют при изготовлении световых указателей и сигналов (активированный ZnS излучает зеленоватое свечение в присутствии трития).

Техника безопасности и контроль. Макс. пробег5001-45.jpg-частиц трития в воздухе 5,8 мм при 20 0C, в биол. ткани 6,5 мкм. Поэтому 5001-46.jpg -частицы трития полностью поглощаются роговыми слоями кожи и внеш. облучение организма тритием и его соед. не представляет опасности. Тритий опасен при попадании в организм через кожу, легкие или при приеме пищи и воды. Период полувыведения трития при поглощении в виде газа 3,3 мин, а в виде воды 10-12 сут. Независимо от путей поступления в организм через 2-3 ч наблюдается равномерное распределение НТО в жидкой фазе организма (кровь, моча, выдыхаемые пары воды). Для газообразного трития и НТО (T2O) категория радиац. опасности Г, минимально значимая активность 3,7 · 106 Бк. Допустимые концентрации трития в воздухе рабочей зоны ДКА и в атм. воздухе или воде ДКБ, предельно допустимое поступление через органы дыхания ПДП, предел годового поступления в организм ПГП приведены в табл. 3.

В ядерных реакторах, работающих на тепловых нейтронах, в результате побочных процессов образуется тритий, к-рый может попадать в окружающую среду с газообразными или жидкими отходами, как непосредственно на АЭС, так и при дальнейшей переработке облученного ядерного топлива. Количеств. оценка поступления трития в окружающую среду с газообразными и жидкими отходами АЭС, ГБк/МВт(электрич.)*год: реакторы ВВЭР (водно-водяной энергетич. реактор) - в атмосферу 7,4-33, в гидросферу 33; реакторы РБМК (реактор большой мощности канальный) - соотв. 22 и 1,5. Существенно более высокие выбросы трития наблюдаются на АЭС с тяжеловодными реакторами. Осн. источник поступления трития в окружающую среду в ядерной технологии - заводы по переработке ядерного топлива. Так, напр., завод по переработке ядерного топлива с производительностью 1500 т UO2 в год м.б. источником трития- (1,11-2,96)·1016 Бк в год.

Табл. 3.- ЗНАЧЕНИЯ ДОПУСТИМЫХ КОНЦЕНТРАЦИЙ ТРИТИЯ

Дтя категории А:

Состояние трития

Критич. орган

ПДП, Бк/год

ДКА, Бк/л

Все тело

5.55 ·1012

22,2 ·105

НТО (T2O)

Все тело

4,4·108

3,7 · 102

Для категории Б:

Состояние трития

Критич. орган

ПДП, Бк/год через органы дыхания

ДКК, Б к/л

в атм. воздухе в воде

Все тело

.5,55 ·1011

7,4·104

НТО (T2O)

Все тело

7,4·107

11,1 14,8 · 104


Эксплуатация термоядерных энергетич. установок будущего приведет к дальнейшему росту выбросов трития, т.к. ТЯЭС (термоядерная энергетич. станция) по оценкам будет выделять трития в 104-106 раз больше, чем АЭС эквивалентной мощности. Задачи улавливания трития и очистки сбросов до санитарных норм, выделения и концентрирования трития с целью его локализации (захоронения) или использования м. б. решены при помощи методов разделения изотопов водорода: ректификацией воды под вакуумом, хим. изотопным обменом (очистка и начальное концентрирование), низкотемпературной ректификацией жидкого водорода, сорбционным разделением на твердых сорбентах. Содержание трития в разл. средах определяют измерением его активности чаще всего ионизационными и сцинтилляционными методами (табл. 4). При недостаточной чувствительности измерит, аппаратуры применяют методы предварит, концентрирования (термодиффузия, ректификация, электролиз).

Табл. 4.- ХАРАКТЕРИСТИКА НАИБОЛЕЕ УПОТРЕБЛЯЕМЫХ МЕТОДОВ ОПРЕДЕЛЕНИЯ ТРИТИЯ

Детектор

Миним. детектируемая активность трития, Бк

Пределы измерения концентрации трития в воде, Бк/л

Пропорциональный

счетчик

3,7·10-2

3,7·(10-106)

Счетчик Гейгера-

Мюллера

3,7·10-2

18,5- 3,7·105

Жидкостной сцинтилляц. счетчик совпадений

0,37

1,85·102-3,7·108

Ионизац. камера

3,7· I02

1,85·105-3,7·1014

Для контроля за содержанием трития в воздухе используют ионизац. камеры [диапазон измеряемых концентраций 3,7·(10-1013) Бк/л], пропорциональные (1,85-3,7·106 Бк/л) и сцинтилляц. счетчики [3,7·(10-1O7) Бк/л], для периодич. контроля - фотопленки. Тритий открыли в 1934 Э. Резерфорд, M. Олифант и П. Хартек.

Лит.: Ленский Л. А., Физика и химия трития, M., 1981; Беловодский Л.Ф., Гаевой В. К., Гришмановский В. И., Тритий, M., 1985; Андреев Б. M., Зельвенский Я.Д., Катальников С.Г., Тяжелые изотопы водорода в ядерной технике, M., 1987; Вредные химические вещества. Радиоактивные вещества. Справочник, под ред. Л. А. Ильина, В. А. Филова, Л., 1990, с. 50-57. Я. Д. Зельвенский.

Еще по теме:
___

     © ХиМиК.ру




Реклама   Обратная связь   Дизайн