Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


АЗОТ

АЗОТ (от греч. а--приставка, здесь означающая отсутствие, и1010-3.jpg-жизнь; лат. Nitrogenium, от nitrum - селитра и греч. gennao - рождаю, произвожу) N, хим. элемент V гр. периодич. системы, ат. н. 7, ат. м. 14,0067. Прир. азот состоит из двух стабильных изотопов- 14N (99,635%) и 15N (0,365%). Конфигурация внеш. электронной оболочки 2s22p3; степень окисления от + 5 до — 3; энергия ионизации при последоват. переходе от № к N7+ соотв. 14,533, 29,600, 47,454, 77,470, 97,886, 552,070, 667,010 эВ; электроотрицательность по Полингу 3,05; радиусы: ковалентный 0,074 нм, Ван-дер-Ваальса 0,15нм, ионные (в скобках указаны координац. числа) для N3- 0,132 нм (4), для N3 + 0,030 нм (6), для N5+ 0,004 нм (3) и 0,027 нм (6).

Молекула азота двухатомна, связь между атомами тройная (длина 0,110 нм). Энергия термич. диссоциации молекулы велика (941,64 кДж/моль), поэтому диссоциация становится заметной лишь при очень высоких т-рах. Так, при 3000°С и нормальном давлении диссоциирована лишь 0,1% молекул.

Общее содержание азота в земной коре 1*10-2 % по массе. Наиб. часть азота находится в своб. состоянии в атмосфере (азот - главная составная часть воздуха: 75,6% по массе или 78,09% по объему). В связанном состоянии азот встречается в воздухе, в водах рек, морей и океанов. В земной коре он образует три осн. типа минералов, содержащих ионы CN-, NO3- и NH+4. Пром. значение имеет натриевая (чилийская) селитра NaNO3, крупные залежи к-рой находятся в Чили; в сравнительно больших кол-вах встречается калиевая (индийская) селитра KNO3. В виде нейтральных и ионизир. атомов, а также в виде соед. [NO, (CN)2, NH3] азот обнаружен в составе газовых облаков комет, в туманностях и в атмосфере Солнца.

Азот входит в состав всех живых организмов. В небольших кол-вах содержится в каменном угле (1,0-2,5%) и нефти (0,2-1,7%). Велико значение азота в жизнедеятельности растений и животных: в белках его до 17%, в организме человека в целом ок. 3%.

Азот участвует в круговороте в-в в природе. Значит. его кол-во поступает в почву в результате жизнедеятельности азотфиксирующих бактерий, способных переводить своб. азот в соединения (см. Азотфиксация), а также в результате нек-рых др. природных процессов. Проблема связывания атм. азота была решена в нач. 20 в. с освоением пром. синтеза NH3 из N2 воздуха и Н2.

Азот - бесцв. газ; т. кип. - 195,80°С, т. пл. -210,00°С; плотн. 1,25046 кг/м3 (0°С), жидкого-0,808 г/см3 (-195,80°С); тройная точка: т-ра -210,00°С, давл. 125,03 гПа; tкрит-146,95°С, ркрит 3,9 МПа, dкрит 0,304 г/см3; уравнение температурной зависимости давления пара: lgp(MM рт.ст.) = 7,65894-359,093/7 (52-483 К); для газа С0p 29,125 ДжДмоль*К), S°298191,498 Дж/(моль*К); теплопроводность 0,077 (82 К), 0,243 (273 К), 0,315 (373 К), 0,725 ВтДм * К) (1273 К);1010-4.jpg 1,000 (298 К), 1,445 (75 К). Для жидкого азота в контакте с воздухом1010-5.jpg8,5 Н/см (-196,15 °С).

В твердом состоянии при обычном давлении азот существует в двух модификациях: ниже — 237,54°С устойчива1010-6.jpg форма с кубич. решеткой типа СО (а = 0,5667 нм, пространств. группа Р213; плотн. 1,0265 г/см3 при - 252,50°С), выше — 237,54 °С-1010-7.jpg-форма с гексаген, решеткой типа MgO (а = 0,393нм, с = 0,650нм, пространств, группа Р63/ттс; плотн. 0,8792 г/см3 при -210,00°С);1010-8.jpgН° перехода 0,231 кДж/моль. Выше 350 МПа существует третья модификация с тетрагон. кристаллич. решеткой.

Р-римость азота в воде (см3 в 100 мл): 2,33 (0°С), 1,42 (40°С), 1,32 (60°С). В нек-рых углеводородах (гексане, гептане и др.) азот растворяется лучше, чем в воде. Растворимость в этаноле и метаноле при 0°С примерно такая же, как в воде.

Большая энергия диссоциации молекулярного азота - причина исключительно малой его реакц. способности. Лишь с нек-рыми активными металлами (напр., с Li, Cs) азот реагирует при невысоких т-рах. С большинством др. простых в-в азот если и реагирует, то лишь при высокой т-ре, а иногда только при участии катализаторов.

Молекулярный азот может быть активирован соед. переходных металлов и затем превращен при обычных т-ре и давлении в NH3, гидразин или ароматич. амины. Наиб. активны в этих р-циях соед. Ti, V, Cr, Mo, Fe; восстановителями служат литий-, магний- или алюминийорг. соед., гидриды металлов, щелочные металлы, их аддукты с ароматич. углеводородами и др. Процесс проводят в апротонных средах (эфирах или углеводородах), при этом нек-рые системы [напр., (1010-9.jpg5-C5H5)2TiCl2-RMgHal] так активны, что поглощают азот с высокими скоростями даже при т-рах от — 100 до — 80 °С. При использовании в кач-ве катализаторов гидроксидов Ti(III) и Сг(П), амальгамы Na и соед. Мо азот удается восстановить в протонных средах (водно-мета-нольные р-ры щелочи).

Ключевая стадия всех этих р-ций - связывание азота в комплекс с соед. переходного металла, при к-ром активируется молекула N2. Известны комплексы, в к-рых с одним атомом металла координированы одна, две или три молекулы N2, напр. [СоН(N2){(С6Н5)3Р}3] цис-[Mo(N2)2{(CH3)2C6H5P}4], [Mo(N2)3{(C3H7)2C6H5P}3], а также биядерные комплексы, напр.

[{(1010-10.jpg-C5H5)2Ti(C6H5)2}2N2], [{Ru(NH3)5}2N2][BF4]4,

в к-рых азотный лиганд служит мостиком между двумя атомами металла. В большинстве этих комплексов группы М—N=N и М—N=N—M линейны.

С кислородом азот заметно взаимод. только выше 2000 °С с образованием NO, к-рый легко окисляется далее до NO2 (см. Азота оксиды). При действии ионизирующих излучений на смеси N2 с О2 образуются оксиды азота, а в присут. воды-НNО3. О кислородных соед. азота см., напр., Азотистая кислота, Азотная кислота, Азотноватистая кислота, Нитраты неорганические.

С водородом азот реагирует лишь при высоких т-ре и давлении в присут. катализатора с образованием аммиака. Косвенными путями получены гидразин N2H4 и азотисто-водородная к-та HN3, образующая соли-азиды. Ниже -15°С существует тетразен H2NN=NNH2.

С галогенами азот непосредственно не реагирует. Однако косвенными путями можно получить соед. со связями N—Hal: галогенамины NHal3, NHHal2, NH2Hal и др., трифтораминоксид NOF3, нитрозилгалогениды NOHal, ни-трилгалогениды NO2Hal, галогеназиды N3Hal и др. Наиб. устойчивы NF3, NOF и NO2F (см. Азота фториды). Трихлорид азота (трихлорамин) NC13-ярко-желтая маслянистая жидкость; т. пл. -27°С, т. кип. 71 °С; d4201,653;1010-11.jpg 229 кДж/моль; взрывчат; раств. в бензоле, CS2, СС14, СНС13; получают взаимод. С12 с р-рами NH3 или NH4C1. Нитрози л хлорид NOC1-красно-оранжевый газ:т. пл. -59,6°С,т. кип. -6°С;плотн. 1,592 г/см3(-6°С);1010-12.jpg 52,5 кДж/моль; заметно диссоциирует на NO и С12 уже при ~20°С; с H2SO4 образует нитрозилсерную к-ту (NO)HSO4; является одним из компонентов царской водки. Получают его взаимод. HNO3 или NO2 с NaCl при нагр., а также р-цией NO с С12 при 40-50 °С в присут. А12О3. Используют как окислитель, хлорирующий и нитрующий агент, катализатор в орг. синтезе. Фторазид N3F-зеленовато-желтый газ, т. пл. — 154°С, т. кип. -82°С; хлоразид N3Cl-бесцв. газ, т. пл. - 100°С, т. кип. — 15°С; бромазид N3Вr-красная жидкость, т. пл. -45°С; иодазид N3I-желтые кристаллы.

С серой азот непосредственно не реагирует. Косвенными методами получены нитриды серы: N4S4- оранжево-желтые кристаллы, которые выше температуры плавления (179°С) или при ударе разлагаются со взрывом; весьма неустойчивый N5S5-красная жидкость; (SN)X, S2N2, S4N2, S5N6 и др.

При действии азота на раскаленный угольный кокс образуется дициан (CN)2. С металлами азот дает нитриды. При высокой т-ре азот взаимод. с Si, а также с Са, Sr, Ba, Ti, W, V, Сг, Mn, Zr, Та, Mo, U, РЗЭ. Азот с СаС2 образует при высокой т-ре CaCN,. Нагревая смесь соды с углем на воздухе, получают NaCN. При 1500°С азот взаимод. с ацетиленом, давая HCN.

Азот входит в состав многочисл. орг. соед.-аминов, аминокислот, нитратов и др.

При действии электрич. разряда на молекулярный азот при давл. 130-260 Па может образоваться активный азот - смесь возбужденных молекул и атомов азота. Он образуется также при взрыве смеси О2 и СО в присут. азота, электрич. разряде в воздухе. Активный азот энергично взаимод. при комнатной температуре с атомарными кислородом и водородом, парами серы, белым фосфором и некоторыми металлами.

Азот в лаборатории м. б. получен по р-циям: NH4NO2 -> N2 + 2Н2О (практически пользуются смесью р-ров NH4C1 и NaNO2); (NH4).Cr2O7 ->N2 + Cr2O3 + 4Н2О. Наиб. чистый азот получают термич. разложением NaN3. В пром-сти азот извлекают из воздуха (см. Воздуха разделение).

В неорг. соединениях азот в форме NH4 обнаруживают по желтому окрашиванию с Несслера реактивом и др. методами; в форме NO3 - пo синему окрашиванию с дифениламином, красному окрашиванию с бруцином и др.; в форме NO-2 -по красному окрашиванию реактива Грисса (р-р сульфаниловой к-ты и а-нафтиламина в разб. уксусной к-те).

Количественно азот определяют ионизационными методами, методом изотопного разбавления (см. Газовый анализ). Азот также определяют, связывая его Li, Mg, Са или др. металлом либо окисляя кислородом в искровом разряде или в электрич. дуге с послед. поглощением образовавшегося NO2 р-ром щелочи. В форме NO-3 азот определяют гравиметрически с использованием в кач-ве осадителя нитрона, фотометрически с применением 2,4-фенолдисульфокислоты в конц. H2SO4 либо восстановлением цинком до NH3 с послед, его отгонкой в определенный объем р-ра к-ты. В форме NO2 азот определяют перманганатометрически или гравиметрически по кол-ву AgBr, а также фотометрически с реактивом Грисса; в форме нитридов-по кол-ву NH3, образовавшегося после растворения образца; в форме оксидов-по изменению объема газовой смеси после восстановления либо титриметрически после растворения в соответствующем жидком поглотителе.

Об определении азота в орг. соединениях см. Ван С лайка метод, Дюма метод, Къельдаля метод, Прегля методы, Шёнигера методы.

Осн. область использования азота - синтез NH3. Своб. азот применяют как инертную среду при нек-рых хим. и металлургич. процессах, в овощехранилищах, при перекачивании горючих жидкостей. Жидкий азот - хладагенткриостатах, вакуумных установках и др.).

Газообразный азот хранят в баллонах черного цвета с желтой надписью "азот", подчеркнутой коричневой полосой, жидкий азот - в сосудах Дьюара, также черного цвета.

Мировое произ-во азота ок. 72 млн. т/год (1978).

Азот открыт Д. Резерфордом в 1772.


===
Исп. литература для статьи «АЗОТ»: Шилов А. Е., "Успехи химии", 1974, т. 43, а 5, с. 863-902; Жаворонков Н. М., "Ж. Всес. хим. об-ва им. Д.И. Менделеева", 1978, т. 23, в. 1, с. 9-22; Проблемы фиксации азота. Неорганическая и физическая химия. Биохимия, пер. с англ., М., 1982; Новое в химической фиксации азота, пер. с англ., М., 1983; Jones К, The chemistry of nitrogen, Oxf., 1975 (Pergamon texts in inorganic chemistry, v. II). Н. М. Жаворонков.

Страница «АЗОТ» подготовлена по материалам химической энциклопедии.

Еще по теме:

     © ХиМиК.ру




Реклама   Обратная связь   Дизайн