Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ЯДРО АТОМНОЕ

ЯДРО АТОМНОЕ, центральная массивная часть атома, состоящая из протонов и нейтронов. Масса ядра атомного примерно в 4 х 103 раз больше массы всех входящих в состав атома электронов. Размеры ядер атомных составляют ~ 10-12-10-13 см. Электрич. заряд положителен и по абс. величине равен сумме зарядов электронов нейтрального атома.

Общие характеристики ядра атомного. Протон (р) и нейтрон (n) в ядре объединяются общим названием "нуклон". Число нуклонов в ядре атомном наз. массовым числом А. Поскольку заряд ядра Z в единицах абс. заряда электрона е равен числу протонов, число нейтронов в ядре атомном равно: N = A — Z. Ядра-изотопы имеют одно и то же Z, но разные N, а ядра-изобары - одно и то же А, но разные Z и N.
Силы, удерживающие нуклоны в ядре, наз. ядерными. Они определяются самым интенсивным из всех известных в физике взаимод. (сильное взаимод.); для двух протонов в ядре, напр., ядерные силы примерно в 100 раз превышают электростатич. отталкивание. Важным св-вом ядерных сил является их независимость от заряда нуклона; взаимод. двух протонов, двух нейтронов или протона и нейтрона одинаковы, если одинаковы состояния относит. движения этих пар частиц, а также спиновые состояния (см. ниже). Ядерные силы характеризуются определенным радиусом действия. Наиб. радиус действия составляет примерно 1,41 х 10-13 см; в то же время зависимость ядерных сил от расстояния между нуклонами пока не установлена.
Размеры ядер атомных зависят от их массового числа. Ср. плотность распределения нуклонов для всех ядер с А > 10 практически одинакова, так что объем ядра пропорционален А, а его линейный размер пропорционален А1/3. Эффективный радиус R ядра определяется равенством: R = аА1/3, где постоянная а составляет величину (1,1-1,4) х 10-13 см в зависимости от того, в каком физ. эксперименте измеряется R. Это равенство показывает, что R меняется от 10-13 до 10-12 см. Плотность ядерного в-ва чрезвычайно велика по сравнению с плотностью обычных в-в и составляет ок. 1014 г/см3. Плотность распределения нуклонов в ядре почти постоянна в центральной его части и экспоненциально убывает на периферии.
Для расщепления ядра атомного на отдельные нуклоны необходимо затратить энергию, наз. энергией связи ядра Есв, определяемую соотношением:

ECB = (Zmp + Nmn-M)c2,

где mp, тпи М - массы протона, нейтрона и ядра соотв.; с -скорость света.
Величина6047-118.jpg= Zmp + Nmn - М = ECB/c2, показывающая насколько масса ядра отличается от массы составляющих его частиц, наз. дефектом массы. На практике дефект массы часто определяют как разницу между массой атома в а. е. м. и массовым числом А. Знание дефекта масс позволяет определить величину энергии, к-рая может выделиться в ядерных реакциях (см. также Ядерная энергия).
Отношение ECB /A слабо меняется при изменении А, составляя для большинства ядер приблизительно 78 МэВ. Эту особенность соотносят с насыщением ядерных сил, т. е. с тем, что каждый нуклон связывается в ядре атомном лишь с ограниченным числом др. нуклонов. Более детальное рассмотрение показывает, что Есв зависит от соотношения А и Z. Существует т. наз. полоса стабильности для этого соотношения, при выходе за пределы к-рой у ядер проявляется нестабильность, т. е. возможен радиоактивный распад (см. Радиоактивность). Это соотношение важно и при установлении предельно возможного значения Z, выше к-рого тяжелые ядра оказываются нестабильными в отношении спонтанного деления. Теоретич. оценки вероятности спонтанного деления ядер не исключают существования "островов стабильности" сверхтяжелых ядер вблизи Z, равных 114 и 126.
Нек-рые ядра существуют в метастабильных возбужденных энергетич. состояниях, что обнаруживается по различиям характеристик радиоактивного распада в основном и возбужденном состояниях (см. также Изомерия атомных ядер).
Квантовые состояния ядер определяются дискретными уровнями энергии и рядом других сохраняющихся в этих состояниях физ. величин. Важнейшие характеристики квантового состояния ядра атомного - его спин I и четность Р. Спиновое квантовое число I целое у ядер с четным А и полуцелое у ядер с нечетным А, поскольку соответствующие числа для протона и нейтрона равны 1/2, а спин составной частицы равен сумме спинов слагающих ее частиц либо отличается от нее на целое число. Четность состояния Р =6047-119.jpg1 указывает на изменение знака волновой ф-ции ядра при инверсии пространства. Основные состояния ядер с четными Z и А обычно четные (Р =6047-120.jpg1) и спин I = 0. Легкие ядра (Z<20) характеризуются дополнит. квантовым числом, наз. изоспином. Изоспин ядра Т является целым числом при четном А и полуцелым - при нечетном (т. к. изоспин нуклона также равен 1/2). В разных квантовых состояниях изоспин м. б. различным, причем Т6047-121.jpg(А — 2Z)/2 (знак равенства справедлив для основного состояния ядра).
Ядро атомное в каждом квантовом состоянии характеризуется помимо энергии также электрич. и магн. моментами. Если квантовое состояние ядра имеет определенную четность, его электрич. дипольный момент равен нулю. В то же время электрич. квадрупольный момент может отличаться от нуля (хотя и здесь имеется ограничение: лишь при I > 1/2). Квадрупольный момент ядра м. б. записан в виде eQ, где Q - коэф.. имеющий размерность площади и меняющийся от 10-27 см2 (легкие ядра) до 10-23 см2 (тяжелые ядра). Наличие квадрупольного момента у ядер свидетельствует о том, что распределение заряда в них не обладает сферич. симметрией и м. б. представлено эллипсоидом вращения. Если ядро вытянуто вдоль оси вращения эллипсоида (оси симметрии), Q > 0, если сплюснуто, то Q < 0. Как правило, большие квадрупольные моменты ядер положительны.
Магн. дипольные моменты ядер m имеют порядок величины ядерного магнетона6047-122.jpg 5,051 x 10-27 Дж/Тл6047-123.jpg-постоянная Планка) и связаны со спином ядра 7 коэф. пропорциональности6047-124.jpg носящим назв. гиромагнитного отношения:6047-125.jpg Значение6047-126.jpgменяется в широких
пределах - от 5,25 для 19F до -2,08 для 119Sn. Магн. дипольный и электрич. квадрупольный моменты ядер м. б. измерены радиоспектроскопич. методами (см. Радиоспектроскопия).

Модели ядер. Квантовая система с сильным взаимод. многих составляющих ее частиц представляет собой сложный объект для совр. квантовой теории. К тому же теория ядра атомного не располагает достаточно определенной информацией о ядерных силах. По этой причине структуру и св-ва ядер описывают пока в рамках моделей, позволяющих получать удовлетворит. результаты лишь по определенным наборам св-в ядер.
Оболочечная модель похожа по структуре на модель электронных оболочек: каждый нуклон находится в ядре в определенном квантовом состоянии, характеризуемом энергией, спином j, его проекцией на одну из осей, орбитальным моментом кол-ва движения l =j6047-127.jpg1/2 и четностью (-1l). Заполнение уровней энергии проводится в соответствии с Паули принципом. Однако при больших А (> 150) квадрупольные моменты ядер отличаются от значений, предсказываемых оболочечной моделью, в 10-100 раз. Поэтому была предложена ротационная модель для несферич. ядер, согласно к-рой ядро представляет собой эллипсоид вращения и уровни энергии зависят от момента инерции ядра. В обобщенной модели сохраняются осн. идеи оболочечной модели, но потенц. поле, в к-ром движутся нуклоны, предполагается имеющим симметрию эллипсоида вращения, а не сферич. симметрию. Активно развиваются кластерные модели, в к-рых используется представление об образовании взаимодействующих между собой кластеров из двух или большего числа нуклонов. Тем не менее ни одна из моделей не может претендовать на последоват. объяснение св-в ядер на основе общих физ. принципов, а также данных о структуре ядер и взаимод. нуклонов. Теория ядра атомного остается пока одной из нерешенных фундам. проблем совр. физики.

Ядерные эффекты в химии. Превращения в-в, не стабильных относительно распада ядер, изучаются, начиная с открытия радиоактивности в 1896. Введенный в нач. 20 в. термин "радиохимия" в наст. время объединяет химию радиоактивных в-в и ядерных превращений и изучение сопутствующих им физ.-хим. процессов. Разработаны методы, позволяющие направленно получать, концентрировать и вьщелять атомы с определенными ядрами, в частности радионуклиды, а также молекулы, в состав к-рых входят такие атомы (см. Ядерная химия).
Заметное влияние на ядерные процессы оказывает строение электронных оболочек атомов и молекул. Так, мёссбауэровская спектроскопия основана на регистрировании резонансного поглощения (рассеяния)6047-128.jpgквантов ядрами при совпадении энергий ядерных переходов поглотителя с частотой6047-129.jpg квантов. Изменение энергетич. состояния ядер в молекуле или кристалле по сравнению с состоянием тех же ядер в свободном атоме определяется, в частности, изменением электростатич. взаимод. объемного заряда ядра с электронами, что приводит к т. наз. хим. сдвигу резонансных линий в мёссбауэровском спектре и взаимод. квадрупольного момента ядра с градиентом электрич. поля на ядре, обусловленным несферич. окружением данного ядра в молекуле. В результате происходит расщепление энергетич. уровней мол. системы в зависимости от проекции спина ядра на направление градиента электрич. поля на ядре. Переходы между расщепленными уровнями наблюдаются с помощью метода ядерного квадрупольного резонанса. Взаимод. магн. момента ядра с магн. полем, создаваемым электронами, определяет сверхтонкую структуру спектров электронного парамагнитного резонанса. Расщепление уровней энергии под влиянием взаимод. магн. моментов ядер, связанных с их спином, обусловило создание разл. вариантов метода ядерного магнитного резонанса; тонкая структура спектров ЯМР вызвана спин-спиновым взаимодействием ядер. Все упомянутые методы, основанные на св-вах ядер и их зависимости от окружения ядер, используются для анализа того, что представляет собой окружение ядер атомных в молекулах, а также для изучения разл. релаксац. процессов в в-ве.
Характеристики ядер, входящих в состав молекулы, наряду с числом электронов полностью определяют данную молекулу, а следовательно, и весь набор ее квантовых состояний (разл. изомеры отвечают лишь разл. участкам на пов-сти потенц. энергии молекулы). Во мн. задачах достаточно рассматривать ядра как точечные образования, несущие заряд Z и определяющие общую структуру волновых ф-ций каждого из квантовых состояний молекулы. Однако более тонкие эффекты зависят от спина ядер, их квадрупольного момента, а также от их размеров и масс (при использовании релятивистских подходов), что приводит к необходимости активного изучения св-в и структуры ядер.
Различие масс ядер изотопов определяет прежде всего изотопные эффекты - различие физ. и хим. св-в в-ва, содержащего изотопно-замещенные молекулы. В частности, различия масс ядер изотопов позволяют увеличить объем информации, извлекаемой из вращат. и колебат. спектров молекул. Предполагается, что у всех изотопно-замещенных молекул потенц. пов-сть, рассматриваемая в адиабатич. приближении, одна и та же, следовательно, и мол. постоянные, определяющие потенц. пов-сть (равновесная конфигурация, силовые постоянные, постоянные ангармоничности и др.), остаются без изменений. Однако положения вращат. и колебат. уровней энергии молекулы зависят от массы составляющих ее частиц, следовательно, меняются и переходы между этими уровнями при изотопном замещении.
Эти же различия в энергетич. спектре изотопов, наряду с различием поступат. энергии молекул с разными массами при одной и той же т-ре, влекут за собой различие термодинамич. св-в в-ва, в частности отличие от единицы констант равновесия изотопного обмена. Р-ции с участием изотопно-замещенных молекул отличаются скоростями, температурной зависимостью и т. п.

Лит.: Бете Г., Моррисон Ф., Элементарная теория ядра, пер. с англ., 2 изд., М., 1958; Давыдов А. С., Теория атомного ядра, М., 1958; Драrо Р., Физические методы в химии, пер. с англ., т. 1-2, М., 1981; Флайгер У., Строение и динамика молекул, пер. с англ., т. 1-2, М., 1982; Мигдал А. Б., Теория конечных ферми-систем и свойства атомных ядер, 2 изд., М., 1983.

Н. Ф. Степанов.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн