Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


СВЕРХПРОВОДНИКИ

СВЕРХПРОВОДНИКИ, в-ва, в к-рых при понижении т-ры до нек-рой критич. величины Тс обнаруживается явление сверхпроводимости-их электрич. сопротивление полностью исчезает. При этом сверхпроводники ведут себя как идеальные диамагнети-ки с аномально большой магн. восприимчивостью c = = — 1/4p, следствием чего является выталкивание магн. поля из объема сверхпроводника (эффект Мейснера). При увеличении напряженности магн. поля до нек-рой критич. величины происходит разрушение сверхпроводящего состояния.

В зависимости от характера проникновения магн. поля в сверхпроводнике и динамики разрушения сверхпроводимости при увеличении напряженности магн. поля различают сверхпроводники 1-го и 2-го рода. Сверхпроводники 1-го рода теряют свою сверхпроводимость в поле H = Hс, когда поле скачком проникает в материал и он во всем объеме переходит в нормальное состояние. Для сверхпроводников 2-го рода характерно постепенное проникновение магн. поля в толщу образца на протяжении интервала от ниж. критич. значения Яс,1 до верх. критич. значения Hс,2, при к-ром происходит полное разрушение сверхпроводящего состояния.

В случае протекания электрич. тока через сверхпроводники вокруг них возникает собств. магн. поле. Существует макс. критич. величина плотности тока Jc, при к-рой это поле разрушает сверхпроводящее состояние. При нахождении сверхпроводников с током во внеш. магн. поле величина Jc может изменяться.

Сверхпроводимость обнаружена более чем у 25 простых в-в (гл. обр. металлов), большого числа сплавов, интерме-таллидов, мн. сложных оксидов переходных металлов, нек-рых полимеров (табл. 1).

Металлы, кроме Nb, Тс, V, относятся к сверхпроводникам 1-го рода. Для Li, Cr, Si, Ce, Pr, Nd, Eu, Yb сверхпроводящее состояние обнаружено только в тонких слоях; As, Ba, Bi, Те, Sb, Se, P и др. становятся сверхпроводниками при охлаждении под давлением. К сверхпроводникам 1-го рода относятся также нек-рые бинарные сплавы. Значения Hс для сверхпроводников 1-го рода не превышает 7,9·104 А/м.

Большое число сплавов, интерметаллидов и др. хим. соед. относится к сверхпроводникам 2-го рода. Среди сплавов типа твердых р-ров, образованных металлами-соседями по периодич. системе, наиб. высокие Тс проявляются у сплавов Мо-Тс и Mo-Re (Тc=11-14К) и сплавов Nb-Ti и Nb-Zr (Tc = 10 К, Jc ! 109-1010 А/м2 при 4,2 К); эти сплавы широко используются в технике для изготовления сверхпроводящих магнитов-соленоидов.

Среди интерметаллидов сверхпроводящие св-ва обнаружены у неск. сотен соед., принадлежащих к разл. структурным типам; самые высокие значения Тс у соединений со структурой b-W, напр. V3Si (Tс4059-8.jpg17 К) и Nb3Ge (Tc4059-9.jpg23 К).

4059-10.jpg

Др. типичный пример сверхпроводников 2-го рода-в-ва, кристаллич. структуры к-рых сформированы с участием атомов металлов и неметаллов, напр.: соед. со структурой NaCl-гидриды, карбиды, нитриды переходных металлов, как правило переменного состава. Для отдельных соед. этой группы Тс превышает 17 К,-напр. для NbN Тс = 17,3 К. Для нек-рых из сверхпроводников 2-го рода высокое значение Тс сочетается с высокими значениями Нс,2. К таким в-вам относятся т. наз. фазы Шеврёля-двойные сульфиды (селениды, теллуриды) молибдена МxМо6S8, где М = Ag, Sn, Pb, Y, Cu, Mg, Sc, In, Co (CM. Металлические соединения). Так, PbMo6S8 при Тс = 15 К обладает Hс в 4,76·104 А/м. Достаточно высокие Hc,2 до 8,1 · 103 А/м при не очень высокой т-ре перехода (Тс < 1 К) имеют также CeCu2Si2, UPt3, UBe13, VRu2Si2 и др.

Для металлов, сплавов, твердых р-ров и нек-рых др. соед. сверхпроводимость объясняется в осн. электронно-фонон-ным механизмом спаривания электронов с противоположными спинами с образованием связанного состояния-т. наз. куперовских пар (теория Бардина-Купера-Шриффера).

Среди множества хим. соед. для изучения сверхпроводимости представляют интерес в-ва, обладающие св-вами полупроводников и сегнетоэлектриков. Среди этих соед. разл. хим. структуры встречаются в-ва с резко выраженной анизотропией электрич. св-в; напр., у слоистых соед.-ди-халькогенидов переходных металлов ф-лы МХ2 (М-переходный металл IV, V или VI группы, X-S, Se, Те) электрич. сопротивление вдоль слоев на неск. порядков ниже, чем поперек.

Направленный поиск привел к открытию сверхпроводимости в нек-рых полимерных структурах. Первый такой сверхпроводник -полисульфурнитрид (SN)x с моноклинной сингонией, его Тс = 0,26 К. Затем были синтезированы сверхпроводящие элементоорг. соед. на основе тетратиофульвалена (TTF), тетраметилтетраселенафульвалена TMTSF и бис-(этиленди-тио)тетратиафульвалена BEDT-TTF, представляющие собой комплексы с переносом заряда (TMTSF)2X или (BEDT-TTF)2Y, где X = PF6, CIO4, AsF6, Y = I3, IBr2, AuI2. T-pa перехода, для этих соед. лежит в интервале от 1 до 10 К, напр.: для (TMTSF2)PF6 Tс = 11 К, для (BEDT-TTF)2I3-1,5-8 К (последняя цифра достигается при давлении больше 2·107Па), для (BEDT-TTF)2IBr2-2,8K, для (BEDT-TTF)2AuI2 - 5 К. У таких органических сверхпроводников, как и у слоистых дихалькогенидов, величина Тс, как правило, зависит от величины приложенного давления. Для соединений типа (TMTSF)2X значения Нс,1 и Hc,2 сильно зависят от направления внеш. магн. поля из-за анизотропии движения электронов в нормальном состоянии; для соединений типа (BEDT-TTF)2X анизотропия при-низких т-рах отсутствует.

Среди оксидных соед., являющихся диэлектриками, сверхпроводимость впервые обнаружена у SrTiO3 со структурой перовскитас ~ 1 К), затем у Li1+xTi2_xO4 со структурой шпинелис> 13 К) и сложных оксидов Ва со структурой перовскита BaPb1-xBixO3 (x = 0,25) при Тс = 14 К. Открытие сверхпроводимости у сложных оксидов меди-Lа2_хМхСuО4 (М = Са, Sr, Ва, x = 0,15)-привело к синтезу многочисленных, т. наз. высокотемпературных, сверхпроводников с Tc4059-11.jpg35 К (табл. 2), для к-рых, как правило, неприемлем электронно-фононный механизм спаривания электронов.

Такие сверхпроводники являются соединениями с ионно-ковалентной связью и дефектной по кислороду перовскитоподобной структурой с упорядоченным расположением кислородных вакансий. Для них характерна сравнительно высокая подвижность кислорода в кристаллич. решетке-при нагр. резко увеличивается дефектность по кислороду. Сверхпроводящие св-ва таких сверхпроводников существенно зависят от содержания кислорода-существует оптимальная его концентрация, при к-рой достигается макс. значение Tс. Так, для слоистых соед. со структурой перовскита типа МВа2СuО7-d (где M-Y или РЗЭ) Тс = 90 К, Hс,24059-12.jpg1,1·108 А/м; для соединений с той же структурой, но на основе более сложных оксидов (фаз переменного состава) типа [Bi1-x(Pb,Sb)x]2Sr2Can-1CunO2n+4, Тl2Ва2Саn_1СunО2n+4 и Т1Ва2Саn-1СunО2n+3 величина Тс превышает 100 К. Последние соед. представляют собой слоистые структуры с чередующимися вдоль тетрагон. оси слоями СuО2 и комплексными анионами Bi2O4, T12O4 или Т1О3 соответственно. В элементарной ячейке сверхпроводников макс. число слоев СuО2 n = 3. Для соед. Bi при n = 2 Тс = 70-95 К, при n = 3 Тс = 105 К, для сложных оксидов Тl соотв. 110и 130 К. Системы этого типа могут находиться в стеклообразном или ситаллоподобном состоянии.

4059-13.jpg

Сверхпроводимость большинства оксидных высокотемпературных сверхпроводников связана гл. обр. с проводящими слоями Сu-О, роль остальных элементов сводится к сохранению нужной кристаллич. структуры. В сверхпроводниках типа YBa2Cu3O7-d замена Y на др. трехвалентные РЗЭ, в т.ч. обладающие магн. св-вами, практически не сказывается на значении Тс. В результате, напр. при М = Nd, Sm, Gd, Dy и Еr, сверхпроводники переходят в антиферромагн. состояние без разрушения сверхпроводимости (антиферромагнитные сверхпроводники).

Все высокотемпературные оксидные сверхпроводники-монокристаллы с резко выраженной анизотропией электрич. и магн. св-в; по величине уд. электрич. сопротивления относятся к полуметаллам. Так, в случае YBa2Cu3O7-d отношение электрич. сопротивления поперек и вдоль слоев составляет ок. 102, в случае Bi2Sr3CaCu2Ox(- ок. 105. Значение Hс,2 для YBa2Cu3O7-d и Bi2Sr2CaCu2Ox вдоль слоев равны соотв. 1,1·108 и (21-3,1)·108 А/м, поперек слоев-2,2·107 и (1,6 — 2,3)·10 А/м; для них во внеш. магн. полях напряженностью (5-10)·108 А/м Jc4059-14.jpg109 А/м2. Такие сверхпроводники в несверхпроводящем (нормальном) состоянии обладают проводимостью р-типа. Синтезированы также сверхпроводники со структурой перовскита, обладающие в нормальном состоянии проводимостью n-типа, напр. Nb2_xCeCuO4 и Рr2_xСеxСuО4, имеющие при x = 0,15 Тс =25 К.

Высокотемпературные оксидные сверхпроводники синтезируют в виде монокристаллов, объемных изделий, пленок или проволоки. Осн. методы получения-методы монокристаллов выращивания, золь-гель, криохим., керамич. или стекольная (для беспористых сверхпроводников) технология. Сверхпроводимость синтезируемых соед. существенно зависит от наличия разл. примесей, концентрац. неоднородностей, пор, дефектов в кристаллах и т.п., что приводит к трудностям воспроизведения и. зачастую не позволяет реализовать предельные значения Тс, Hс или Jc.

Новым направлением в химии сверхпроводников является синтез объемных кластерных структур углерода фиксир. состава-т. наз. фуллеренов, напр. СsxRbyС60с = 7 К, Jc = 2·1010 А/м2), К3С60 (Tc=18-30К), RbC60 (Tc = 31K), (Rb, Tl)C60 с = 43 К), СlС60 (Tс = 57 К).

Осн. области применения сверхпроводников-конструкц. материалы в сверхпроводящих магнитах (напр., небольших малоэнергоемких магнитов, создающих большие магн. поля и применяемых в ускорителях элементарных частиц, устройствах магн. левитации); материалы для создания высокочувствит. магнитометров (напр., контакты Джозефсона для точного измерения напряженностей слабых магн. и электрич. полей и слабого электрич. тока в аппаратах мед. диагностики-ЯМР-томографах, магнитокардиографах, магнитоэнцефалографах); накопители магн. энергии; материалы электропроводящих линий для получения, передачи и хранения электроэнергии.

4059-15.jpg

Макс. значения Тс металлических (пунктирная линия) и оксидных (сплошная линия) сверхпроводников; штрихпунктирная линия соответствует т-рам кипения возможных хладагентов.

Историческая справка. Впервые сверхпроводимость была обнаружена X. Камерлинг-Оннесом (1911) у Hg при т-ре ниже 4,2 К (см. рис.). В 1974 синтезировано соед. Nb3Ge, в 1975-органические сверхпроводники полимерной структуры. Среди оксидных сверхпроводников первым был получен SrTiO3 (1964). Синтез высокотемпературных оксидных сверхпроводников начался в 1986 с открытия Дж. Беднорцем и К. Мюллером сверхпроводимости оксидов состава Lа2-хМхСuО4 (соед. такого типа впервые получены в СССР в 1979). Исследования продолжил К. By с сотрудниками, открыв сверхпроводимость в соединениях состава МВа2Сu3О7-d (1987).

Лит.: Воесовский С. В., Изюмов Ю.А., Курмаев Э. 3., Сверхпроводимость переходных металлов, их сплавов и соединений, М., 1977; Головаш-кин А. И., "Успехи физ. наук", 1987, т. 152, в. 4, с. 553-73; Гинзбург В. Л., Киржниц Д. А., там же, с. 575-82; Высокотемпературные сверхпроводники, под ред. Д. Нелсона, М. Уиттинхема, Т. Джорджа, пер. с англ., М., 1988; Беднорц И. Г., Мюллер К. А., "Успехи физ. наук", 1988, т. 156, в. 2, с. 323-46; "Ж. Всес. хим. об-ва им. Д. И. Менделеева", 1989, т. 34, № 4; Физические свойства высокотемпературных сверхпроводников, под ред. Д. М. Гипзберга, М., 1990; Электронная структура и физико-химические свойства высокотемпературных сверхпроводников, М., 1990; Bednorz J.G., Muller K.A., "Z. Physik", 1986, Bd 64, № 2, S. 189-93; Novel superconductivity, ed. by P. L. Stuart, S. A. Wolf, V.Z. Kresin, N.Y., 1987; Putilin S. N. [a. o.], "Nature", 1993. v. 362, p. 226-28.

В. Б. Лазарев, Э. А. Тищенко.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн