Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий

Система Orphus

СПЛАВЫ

СПЛАВЫ, макроскопические однородные системы, состоящие из двух или более металлов (реже-металлов и неметаллов) с характерными металлич. св-вами. В более широком смысле сплавы-любые однородные системы, полученные сплавлением металлов, неметаллов, неорг. соед. и т.д. Многие сплавы (напр., бронза, сталь, чугун) были известны в глубокой древности и уже тогда имели обширное практич. применение. Техн. значение металлических сплавов объясняется тем, что мн. их св-ва (прочность, твердость, электрич. сопротивление) гораздо выше, чем у составляющих их чистых металлов.

Называют сплавы исходя из названия элемента, содержащегося в них в наиб. кол-ве (основной элемент, основа), напр. сплавы железа, сплавы алюминия. Элементы, вводимые в сплавы для улучшения их св-в, наз. легирующими, а сам процесс -легированием.

По характеру металла-основы различают черные сплавы (основа -Fe), цветные сплавы (основа - цветные металлы), сплавы редких металлов, сплавы радиоактивных металлов. По числу компонентов сплавы делят на двойные, тройные и т.д.; по структуре-на гомогенные (однородные) и гетерогенные (смеси), состоящие из неск. фаз (последние м. б. стабильными и метаста-бильными); по характерным св-вам - на тугоплавкие, легкоплавкие, высокопрочные, жаропрочные, твердые, антифрикционные, коррозионностойкие, сплавы со спец. св-вами и др. По технологии произ-ва выделяют литейные (для изготовления деталей методом литья) и деформируемые (подвергаемые ковке, штамповке, прокатке, прессованию и др. видам обработки давлением).

Структура и получение. Физ.-хим. основой создания сплавов являются диаграмма состав - свойство и диаграмма состояния соответствующих систем, позволяющие определять св-ва сплавов в условиях их термич. обработки. Диаграммы состояния строят на основании эксперим. данных или расчетным путем с использованием разл. термодинамич. моделей. В настоящее время в той или иной степени диаграммы состояния известны для большинства имеющих практич. значение двойных и тройных систем.

Сплавы в кристаллич. состоянии представляют собой поликристаллич. тела, состоящие из большого числа мелких (10-3-10-7 м), различно ориентированных по отношению друг к другу кристаллов, называемых кристаллитами или зернами. Фазы кристаллических сплавов представляют собой твердые растворы или хим. соед. двух или более металлов (см. Металлические соединения, Интерметаллиды).

Макс. кол-во равновесных фаз в сплавах определяется числом составляющих его компонентов (см. Фаз правило). Форма, размеры и характер взаимного расположения фаз в сплавах характеризуют его структуру. Различают макроструктуру (строение сплава, видимое невооруженным глазом или при увеличении в 30-40 раз) и микроструктуру (строение сплава, наблюдаемое с помощью светового или электронного микроскопа с увеличением в 100 тыс. раз). Макроструктуру обычно исследуют по излому и на спец. макрошлифах. Кристаллические сплавы имеют зернистый (кристаллич.) излом. По нему судят о размерах зерна, условиях выплавки и кристаллизации, термин, обработке и св-вах сплава. Микроструктура показывает взаимное расположение фаз, их форму и размеры. Для изучения микроструктуры из сплава изготовляют микрошлиф, т. е. небольшой образец, одну из плоскостей к-рого тщательно шлифуют, полируют и подвергают травлению. По микроструктуре можно оценить величину нек-рых мех. св-в сплавов.

Осн. метод получения сплавов-смешение и расплавление составляющих его компонентов с послед. затвердеванием в кристаллич. или аморфном состоянии. Сплавы можно получать и без расплавления осн. компонента-методами порошковой металлургии. Др. способы получения - осаждение из р-ров и газовой фазы, диффузионное насыщение одного компонента другим, совместное электрохим. осаждение из р-ров и др. Для получения сплавов в виде тонких пленок и покрытий используют осаждение из газовой фазы, напыление, конденсацию паров, электролиз.

Большинство сплавов, получаемых обычными способами, при затвердевании кристаллизуются. При быстром охлаждении расплава (скорость охлаждения 1-10 млн. градусов в с), напр. при контакте расплавленной капли металла с быстро-вращающейся охлажденной пов-стью, распылении расплава холодной струей газа или конденсации паров металлов в тонкие пленки на охлаждаемой подложке, получают аморфные сплавы. Мелкодисперсные порошки таких сплавов затем м. б. спрессованы путем горячей экструзии в заготовки или с помощью плазменного факела нанесены на разл. детали в виде тонких покрытий. Аморфные сплавы по сравнению с кристаллическими обладают повыш. св-вами-износостойкостью, прочностью, пластичностью, коррозионной стойкостью, сопротивлением усталости.

Свойства. Различают структурно-нечувствит. и структурно-чувствит. св-ва сплавов. Первые определяются силами межатомного взаимод., т. е. природой составляющих сплавы элементов и их концентрацией. К ним относят плотность, т-ру плавления, теплоту испарения, тепловые и упругие св-ва, коэф. термич. расширения. Структурно-чувствит. св-ва помимо природы элементов и их концентрации зависят от характеристик структуры: формы и размера зерен, наличия разл. вида дефектов кристаллич. структуры и концентрации этих дефектов; к ним относят прочность, пластичность, твердость, хрупкость, ползучесть, усталость, ударную вязкость.

Структурно-чувствит. св-ва формируются в процессах получения и обработки сплавов. При изготовлении полуфабрикатов и изделий из сплавов методом плавки, литья и послед. мех., термич., хим. и др. обработки структура сплавов претерпевает ряд изменений. Характер этих изменений и условия управления ими подробно разработаны в теориях жидкого состояния, кристаллизации, термич. и термомех. обработки металлов и сплавов.

Уже в процессе плавки исходных компонентов м. б. созданы условия для получения после затвердевания сплавов с разл. структурой. Величина перегрева расплава, время выдержки при высокой т-ре влияют на кол-во и степень дисперсности нерастворимых в расплаве примесей тугоплавких соединений. При кристаллизации частицы этих примесей служат центрами зарождения зерен, поэтому чем больше примесных частиц (перед затвердеванием), тем мельче зерно в затвердевшем сплаве. В процессе кристаллизации в слитке возникает хим. микронеоднородность-дендритная ликвация, вызванная неравновесной кристаллизацией твердых р-ров. Эта неоднородность устраняется отжигом, в результате к-рого путем диффузии в твердой фазе происходит выравнивание концентрации по всем участкам сплава (гомогенизирующий отжиг).

Способы обработки. Структура и св-ва сплавов поддаются изменению. В результате разл. видов мех. обработки-ковки, прокатки, прессования, штамповки, волочения, резания из сплавов получают полуфабрикаты (листы, прутки, ленты, трубы) или изделия заданной формы. При этом, как правило, крупнозернистая после литья и гомогенизирующего отжига структура измельчается; в нек-рых случаях (после прокатки, прессования) образуется волокнистая текстура; на неск. порядков увеличивается плотность дефектов кристаллич. решетки.

Термич. обработка сплавов приводит к существ. изменению их физ.-мех. св-в. По т-ре нагрева, длительности выдержки, скорости охлаждения, а также по назначению термич. обработка подразделяется на отжиг, закалку (с полиморфным превращением или без него), отпуск и старение.

Отжиг заключается в нагреве сплавов до определенной т-ры, выдержке при этой т-ре и медленном (непрерывном или ступенчатом) охлаждении; приводит к получению равновесно-устойчивых структур, уменьшает остаточное напряжение в сплавах, повышает их пластичность. Закалка-нагрев и выдержка сплавов при определенной т-ре с послед. быстрым охлаждением-приводит к получению нестабильных состояний в сплавах, способствует, как правило, повышению их твердости и хрупкости. Отпуск осуществляют обычно после закалки, нагревая сплавы до определенной т-ры с послед. охлаждением с заданной скоростью на воздухе или в воде; повышает пластичность закаленного сплава, уменьшает хрупкость. Старение-самопроизвольное изменение структуры сплава в результате длит. выдержки при определенной т-ре (комнатной или при нагреве)-способствует увеличению прочности и твердости сплава с одновременным уменьшением пластичности и ударной вязкости.

При произ-ве сплавов термич. обработку чаще всего чередуют с механической или совмещают с ней. Если при этом приобретенные в процессе мех. обработки пластич. деформация и плотность дефектов кристаллич. решетки влияют на формирование структуры при термич. воздействии, то такая обработка наз. термомеханической. Применяя разнообразные виды термич. и мех. обработки, можно одному и тому же сплаву придавать существенно разл. св-ва. Напр., углеродистая сталь после пластич. деформации становится тверже и прочнее, в результате послед. отжига-мягче и пластичнее; если затем применить закалку, то сталь станет еще более твердой и прочной, чем первоначально.

Хим.-термич. обработка сочетает одновременное тепловое и хим. воздействие, в результате чего изменяется состав и структура поверхностных слоев, а иногда и всего изделия. Наиб. распространено насыщение поверхностных слоев сплавов разл. соединениями - борирование (насыщение бором), азотирование (насыщение азотом), силицирование (насыщение кремнием), оксидирование (насыщение кислородом), цементация (насыщение углеродом, науглероживание).

Применение. По назначению сплавы разделяют на большое число видов.

Конструкционные сплавы предназначены для изготовления деталей машин, строит. конструкций и др. сооружений. Такие сплавы обладают целым комплексом св-в, обеспечивающих надежную и долговечную работу в условиях высоких мех. напряжений - высокой прочностью, ударной вязкостью, хорошим сопротивлением к усталости, динамич. и ударным нагрузкам. Основную (по объему) часть выпускаемых во всем мире конструкционных сплавов составляют разл. марки сталей и чугунов. В авиац., судостроит. и космич. технике, где кроме перечисленных выше св-в необходимо учитывать плотность материала, находят применение конструкционные сплавы на основе А1 и Ti, к-рые по уд. прочности во мн. случаях не уступают, а иногда даже превосходят наиб. прочные стали.

Из инструментальных сплавов изготовляют гл. обр. измерит. и металлообрабатывающие инструменты. Первые изготовляют в осн. из углеродистых или легированных сталей, вторые - из быстрорежущих, штамповых сталей (см. Железа сплавы) и твердых сплавов. Изделия из быстрорежущих и штамповых сталей получают традиц. методами литья с послед. мех. и термич. обработкой. Инструменты из твердых сплавов обладают более высокой твердостью, чем инструменты из стали, и способны работать при более высоких т-рах и с более высокой производительностью.

В группу электротехнических входят сплавы с особыми магн. (см. Магнитные материалы) и электрич. св-вами.

К сплавам с особыми электрич. св-вами относят: электроконтактные сплавы (размыкающие, скользящие); с высоким, слабо зависящим от т-ры электрич. сопротивлением; термоэлектродные; резисторные; сплавы для нагреват. элементов и др. Размыкающие контакты должны обладать высокой тепло-и электропроводностью, эрозионной стойкостью, сопротивлением свариваемости. Их изготовляют из сплавов благородных металлов, сплавов систем W-Ni-Cu, W-Ni-Ag, Ag-CuO(CdO). Скользящие контакты, кроме того, должны обладать низким коэф. трения и высокой износостойкостью. Для их изготовления используют сплавы на основе систем Сu-С, Ag-Ni, Ag-Pd с добавками MoS2 , Sb и др., получаемые методами порошковой металлургии. Сплавы с высоким электрич. сопротивлением и малым температурным коэф. для реостатов, измерит. и др. приборов изготовляют на основе систем Cu-Ni (константан), Cu-Mn-Ni (манганин). Сплавы для нагреват. элементов обладают высоким электрич. сопротивлением, достаточной прочностью и стойкостью против окисления при высоких т-рах, напр. сплавы, содержащие Ni и Сr (нихромы), Fe, Сr и А1 (фехраль), Ni и Сг (хромаль). Для изготовления термопар используют сплавы на основе систем Pt-Ph, Ni-Cr (хромель), Ni-Аl-Мn-Si (алюмель), Cu-Ni (копель).

Триботехнические сплавы, предназначенные для работы в узлах трения, подразделяют на фрикционные (увеличивающие трение) и антифрикционные (снижающие трение). Первые должны обладать высокими и стабильными в широком интервале т-р коэф. трения, износостойкостью, теплопроводностью, сопротивлением схватыванию, достаточной прочностью; вторые-низким коэф. трения, высокой износостойкостью. Фрикционные сплавы получают в осн. методами порошковой металлургии на основе Fe и Си с добавками асбеста, оксидов и карбидов (увеличивающих трение), Pb, Sn, графита, сульфидов, солей (улучшающих износ и предотвращающих схватывание). Антифрикционные сплавы-чугуны, бронзы и баббиты-сплавы на основе Pb, Sn, Zn или Аl (см. Антифрикционные материалы). Методами порошковой металлургии получают антифрикционные сплавы на основе системы Fe-графит и бронза—графит.

О жаропрочных и коррозионностойких сплавах см. соотв. Жаропрочные сплавы, Коррозионностойкие материалы.

Большую группу составляют сплавы со специфич. св-вами: тугоплавкие, легкоплавкие, пористые, с постоянным коэф. термич. расширения, с особыми ядерными св-вами, с эффектом памяти формы и др. Тугоплавкие сплавы для нагреват. элементов и др. деталей, работающих при т-ре > 1500°С, изготовляют на основе переходных металлов IV-VI гр., a также тугоплавких карбидов, нитридов, силицидов, боридов разл. металлов. Легкоплавкие сплавы на основе Sn, Pb, Cd, Bi (напр., сплав Вуда), Та, Hg, Zn имеют т-ры плавления ниже отдельных компонентов и используются в качестве предохранит. вставок, пробок, легкоплавких припоев. Пористые сплавы создают в осн. методами порошковой металлургии. Сплавы со сквозными порами используют в качестве фильтров, самосмазывающихся подшипников, пламегасителей; с изолир. порами (пеноматериалы)-в качестве теплозащиты. В атомной технике используют сплавы с особыми ядерными св-вами: высоким или низким сечением захвата (вероятностью поглощения) нейтронов, g-лучей; способностью замедлять и отражать нейтроны; способностью передавать тепло, выделившееся в результате ядерных р-ций (напр., сплавы для твэлов). Для их изготовления используют актиноиды Li, Be, В, С, Zr, Ag, Cd, In, Gd, Er; Sm, Hf, W, Pb и др. элементы.

В последнее время созданы сплавы с эффектом памяти формы, напр. на основе никелида Ti. Изделия определенной формы из таких сплавов, будучи многократно деформированы, после нагрева восстанавливают свою первоначальную форму.

Анализ. Для установления и проверки св-в сплавов применяют разл. методы контроля, в т.ч. разрушающего-испытания на мех. прочность и пластичность, жаропрочность, на прочность против коррозии, и неразрушающего (измерения твердости, электрич., оптич., магн. св-в). Хим. и фазовый состав сплавов определяют хим.-аналит. методами (см. Качественный анализ, Количественный анализ), с помощью спектрального анализа (в т.ч. рентгеновского), рентгеновского структурного анализа и др. методов. Весьма эффективны для практич. применения методы быстрого ("экспрессного") хим. анализа, используемые в процессе произ-ва сплавов, полуфабрикатов и изделий. Для исследования самой структуры сплавов и ее дефектов используют методы хим. металловедения.

Лит.: Захаров М. В., Захаров A.M., Жаропрочные сплавы, М., 1972; Гуляев А. П., Металловедение, 5 изд., М., 1977; Ульянин E. А., Коррозионностойкие стали и сплавы, М., 1980; Колачев Б. А., Ливанов В. А., Елагин В. И., Металловедение и термическая обработка цветных металлов и сплавов, 2 изд., М., 1981; Рахштадт А. Г., Пружинные стали и сплавы, 3 изд., М., 1982; Геллер Ю. А., Инструментальные стали, 5 изд., М., 1983; Новиков И. И., Теория термической обработки металлов, 4 изд., М., 1986; Аморфные металлические сплавы, пер. с англ., под ред. Ф.Е. Люборского, М., 1987.

Ю. В. Левинский.



     © ХиМиК.ру




Реклама   Обратная связь   Дизайн