Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


2.5. МЕТОД АТОМ-АТОМНЫХ ПОТЕНЦИАЛОВ

В приближении супермолекулы мы рассматривали систему из сольватированного соединения и некоторого числа молекул раство­рителя как одну большую молекулу. Такой подход является не­посредственным обобщением методов квантовой химии, разрабо­танных для расчета свойств отдельных (изолированных) соедине­ний на межмолекулярные взаимодействия. При этом в качестве исходных частиц приходится оперировать электронами и атом­ными ядрами. При изучении системы, состоящей из одной молекулы, такой подход является единственно возможным, так как только на этом уровне можно анализировать большинство химических свойств молекулы. При рассмотрении межмолекулярных взаимо­действий появляется возможность оперировать не с электронами и атомными ядрами, а с отдельными молекулами. Для этого не­обходимо иметь потенциалы, описывающие межмолекулярные взаимодействия. В случае системы, состоящей из электронов и ядер, необ­ходимо решать уравнение Шредингера, так как электроны следует рассматривать как квантовые частицы. При рассмотрении межмо­лекулярных взаимодействий молекулы можно рассматривать как классические объекты. Благодаря этому появляется возможность использовать для их описания эмпирические потенциальные функции. Это существенно упрощает задачу.

Различные эмпирические потенциалы, которые предлагались раз­личными авторами для описания межмолекулярных взаимодействий, не удовлетворяют точности, необходимой при учете сольватации. Отсутствие достаточно надежных потенциалов делало невозможным использование такого подхода для изучения сольватации. Сущест­венный прогресс в этой области был достигнут благодаря работам Клементи с сотрудниками. Ими была выдвинута идея использовать неэмпирические квантовохимические расчеты для определения потен­циалов межмолекулярных взаимодействий [106—109]. Первоначально потенциалы генерировались в численной форме путем неэмпирического расчета энергии взаимодействия сольватированной молекулы и моле­кулы растворителя. Но, так как дальнейшее использование числен­ного потенциала для построения сольватационной оболочки затруд­нительно, была подобрана аналитическая функция для его аппрокси­мации, которая представляла собой сумму атом-атомных потенциалов. При этом все атомы в молекуле были разбиты на классы в зависимости от того, к каким функциональным группам и в каких положениях в группах находится данный атом. В результате число классов во много раз превышало число различных атомов. Для атомов каж­дого класса подбирались свои атом-атомные потенциалы. Аналити­ческая форма, в которой производился поиск атом-атомных по­тенциалов, выбиралась разной и зависела от базиса, использован­ного в расчете. При вычислении потенциала взаимодействия между молекулами в небольших базисах обычно использовалась относи­тельно простая аналитическая функция

Uij= -Aij/r6ij + Bij/r12ij + Cijqiqj/rij

где Uij- энергия взаимодействия между атомами i и j; rij- расстояние между этими атомами; qi и qj- заряды на атомах; Аij, Вij и Сij- эмпирические параметры, зависящие от того, к каким классам при­надлежат атомы i и j.

Для нахождения потенциалов межмолекулярных взаимодействий неэмпирическими методами с использованием больших базисов, близ­ких к хартри-фоковскому пределу, использовались более сложные аналитические функции. Расчеты в больших базисах были про­ведены для определения аналитических потенциалов, описывающих взаимодействие между молекулами воды. Расчеты в минимальном базисе были использованы для определения атом-атомных потен­циалов, описывающих взаимодействие между молекулой воды и осно­ваниями ДНК, аминокислотами и т.д.

Число классов атомов у молекул типа оснований ДНК и амино­кислот составляет несколько десятков, число неизвестных параметров в атом-атомных потенциалах достигает нескольких сотен. При определении значений этих параметров приходится варьировать относительное положение и взаимную ориентацию молекул в доста­точно широких пределах, практически для вычисления каждого пара­метра приходится делать 15 - 20 расчетов. Таким образом, для рас­чета потенциала межмолекулярного взаимодействия молекул среднего размера типа оснований ДНК и молекул воды необходимо сделать не­сколько десятков тысяч расчетов полной энергии системы неэм­пирическим методом. Поэтому процедура подбора параметров свя­зана с очень большими затратами машинного времени. Но следует отметить одно благоприятное обстоятельство: по мере накопле­ния наборов параметров и создания их банка для каждого нового соединения объем вычислений сокращается, так как оказывается возможным отнести большинство атомов к уже известным классам, для которых все параметры аналитических потенциалов известны из расчетов других молекул [110].

После нахождения потенциалов расчет строения сольватационной оболочки и энергии взаимодействия между растворителем и растворенным соединением становится относительно простой зада­чей, аналогичной задачам конформационного анализа. Аналитическая форма, в которой в настоящее время найдены потенциалы для описания взаимодействия молекул среднего размера и молекул воды, также совпадает с наиболее широко распространенными по­тенциалами, которые используются в конформационных расчетах. Однако параметры в потенциалах Клементи для межмолекулярных взаимодействий имеют совершенно иную природу. В конформационном анализе потенциалы типа 6 - 12 описывают ван-дер-ваальсовы взаимодействия между атомами, а у Клементи - электронодонорные и электроноакцепторные взаимодействия. Третий член в фор­муле для атом-атомных потенциалов соответствует кулоновскому взаимодействию. Для электрически нейтральных молекул значение коэффициента Сij в потенциалах Клементи близко к единице. Од­нако для ионов оно не превышает 0,5; это связано, по-видимому, с эффектами экранирования и перераспределения заряда.

Использование потенциалов Клементи позволяет рассматривать гидратацию весьма сложных молекул большим числом молекул воды. Пока число молекул воды не превышает 10 - 15, каких-либо сущест­венных трудностей при расчете строения гидратационной оболоч­ки не возникает. Однако при дальнейшем увеличении числа мо­лекул воды появляется ряд новых проблем. Для достаточно точ­ного описания гидратационной оболочки даже небольшого соеди­нения количество молекул воды желательно увеличить до 200 - 300. При расчете строения такой огромной гидратационной оболочки основная трудность заключается в существовании большого числа структур с близкими энергиями. Задача сводится к нахождению всех таких структур, определению вероятности реализации каждой из них и усреднению по всем найденным структурам. В таком расчете приходится учитывать температурную зависимость.

В работах Клементи показано, что для нахождения строения гидратационных оболочек можно успешно использовать метод Мон­те-Карло, с помощью которого были проведены расчеты строения гидратационных оболочек ряда простых ионов с учетом их взаимо­действия с 200 - 250 молекулами воды. При этом возникла еще одна проблема. Распределение молекул воды в расчетах методом Монте-Карло носит вероятностный характер, поэтому перед исследователя­ми встала задача перехода к таким простым и наглядным характе­ристикам гидратации, как число молекул воды в первой гидратацион­ной сфере и ее радиус. Для получения этой информации было пред­ложено вычислить зависимость плотности атомов водорода или кислорода от расстояния до центра иона. На таких графиках по­лучается ряд четко выраженных максимумов. Их положение для атомов кислорода обычно связывают с радиусами гидратацион­ных оболочек, а площадь под кривыми - с количеством молекул воды в оболочке. Ниже приведены радиусы первых гидратацион­ных оболочек (R) и число молекул воды в них (N), вычисленные таким способом [108, 109].

Ион

R, нм

N

Li+

0,19—0,20

4

Na+

0,23—0,24

5—6

К+

0,28—0,29

5—7

F-

0,27—0,28

4—6

Cl-

0,34—0,35

6—7

Использование атом-атомных потенциалов весьма перспективно и может существенно расширить наши представления о сольватации и ее влиянии на реакционную способность органических соедине­ний. Банк параметров в настоящее время достаточно велик, и можно надеяться, что в будущем он будет еще расширен. Однако следует подчеркнуть те допущения, которые делаются в этих рас­четах.

1. Используется приближенный квантовохимический метод (для молекул среднего размера весьма грубый) для вычисления пара­метров атом-атомных потенциалов. В случае небольшого числа молекул растворителя ошибки могут быть невелики, но по мере увеличения их количества они будут накапливаться.

2. Ошибки в расчетах могут возникать за счет аппроксима­ции численного потенциала весьма простыми аналитическими функ­циями.

3. Атом-атомные потенциалы, которые обычно используют для изучения сольватации, не являются аддитивными функциями, а взаимодействия трех тел учесть довольно сложно и этого почти никогда не делают, хотя эти коллективные взаимодействия су­щественно влияют на результаты расчета (это, по-видимому, са­мый большой недостаток метода Клементи).

В ряде работ подход Клементи к учету сольватации был использован для изучения влияния растворителя на поверхности потен­циальной энергии органических реакций [111, 112]. Эти работы будут более подробно рассмотрены ниже. Здесь же мы только отметим, что проведение таких расчетов требует очень больших затрат машинного времени. Их порядок таков: 1) вычисляют пол­ную энергию для какой-либо точки на поверхности потенциальной энергии газофазной реакции; 2) в этой точке рассчитывают па­раметры атом-атомных потенциалов, описывающих взаимодействие реагентов с молекулой растворителя; 3) с помощью атом-атомных потенциалов, полученных на предыдущем этапе расчета (см. пункт 2), методом Монте-Карло вычисляют энергию сольватации.

Такую цепочку расчетов приходится проводить для каждой точ­ки поверхности потенциальной энергии, так как в ходе реакции электронная структура реагентов существенно меняется, что при­водит к изменению параметров эмпирической потенциальной функ­ции, описывающей взаимодействие с молекулой растворителя. Из-за этого нельзя пользоваться банком готовых параметров для атом-атомных потенциалов, более того, их приходится пересчитывать в каждой новой точке поверхности потенциальной энергии. Именно эта стадия расчета связана с очень большим объемом вычислений.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн