Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


СОЛЬВАТАЦИЯ

СОЛЬВАТАЦИЯ, взаимод. молекул растворенного в-ва (или их ассоциатов) с молекулами р-рителя. Приводит к изменению св-в молекул в р-ре (в сравнении со св-вами газовой фазы), влияет на все физ. и физ.-хим. процессы, протекающие в р-рах, в т.ч. определяет скорость реакций в растворах и положение равновесия, а в ряде случаев и их механизм. Сольватация в водных средах часто наз. гидратацией. Наиб. интенсивна сольватация ионов в растворах электролитов.

Сольватация состоит в том, что молекула растворенного в-ва оказывается окруженной сольватной оболочкой, состоящей из более или менее тесно связанных с ней молекул р-рителя. В результате сольватации образуются сольваты-мол. образования постоянного или переменного состава. Время жизни соль-ватов определяется характером и интенсивностью межмолекулярных взаимодействий; даже в случае сильного взаимод. время жизни отдельного сольвата мало из-за непрерывного обмена частицами в сольватной оболочке. В соответствии с типами межмол. взаимод. выделяют неспецифическую и специфическую сольватацию. Неспецифическая сольватация обусловлена ван-дер-ваальсовыми взаимод., специфическая сольватация проявляется гл. обр. вследствие электростатич. взаимод., коор-динац. и водородных связей.

Важнейшие термодинамич. характеристики сольватации-энтальпия сольватации DHc и энергия Гиббса сольватации (своб. энергия сольватации) DGc, связанные соотношением:

DGc= DHcDSc,

где DSc-энтропия сольватации, T-абс. т-ра. Энтальпия сольватации определяет тепловой эффект внедрения молекулы растворенного в-ва в р-ритель; энергия Гиббса сольватации определяет растворимость в-ва.

Наиб. простой способ эксперим. определения энтальпии сольватации состоит в непосредств. измерении теплового эффекта растворения в-ва А в р-рителе S-энтальпии растворения DHрА/S-и использовании соотношения:

4075-18.jpg

где4075-19.jpg-энтальпия парообразования в-ва А. Благодаря развитию калориметрич. техники определение энтальпий растворения возможно практически для всех систем; осн. проблема состоит в корректном определении энтальпий парообразования. В то же время измерения значений DGc достаточно трудны, особенно в случаях сольватации ионов в неводных р-рах. Нередко вместо DGc вычисляют изменение этой величины D(DGc) относительно ее значения в водной среде, используя для этого стандартную молярную энергию DGп переноса иона X из воды W в к.-л. р-ритель S:

D(DGc) = DGп(X, W:S)=4075-20.jpg(в р-рителе S)-4075-21.jpgводе),

где4075-22.jpg-стандартный хим. потенциал иона X (рассматривается бесконечно разб. р-р).

Структура ближайшего окружения частицы растворенного в-ва характеризуется координационными числами сольватации, определяемыми как кол-во молекул р-рителя, связанных достаточно долго с этой частицей, чтобы участвовать вместе с ней в диффузионном движении. Число сольватации зависит от природы растворенной частицы и р-рителя, а также в нек-рой степени от используемого метода определения; обычно используют данные по сжимаемости р-ра, скорости диффузии ионов, электропроводности, а также термохим. методы, электронное спиновое эхо и др. Для одновалентных ионов щелочных металлов и галогенов числа сольватации составляют от 0,5 до 5,0 (значения меньше 1 свидетельствуют о том, что в нек-рые моменты времени сольват-ная оболочка отсутствует).

В бинарных р-рителях, состоящих из нейтрального (не-полярного) и активного (полярного) компонентов, возникает селективная сольватация, при к-рой состав сольватной оболочки резко отличается от состава р-ра в целом. Особенно сильна селективная сольватация при малых концентрациях полярного компонента.

При исследовании динамич. поведения молекул в р-рах, их реакц. способности, для описания сольватации короткоживущих состояний используют понятие неравновесной сольватации (неравновесной среды), при к-рой состав и строение сольватных оболочек не отвечают минимуму своб. энергии системы, достижимому при условии бесконечности времени жизни данных состояний. Напр., состояния молекул, из к-рых происходит оптич. (излучательный) квантовый переход, всегда сольватированы неравновесно. Неравновесность среды определяется как вращательными, так и трансляц. степенями свободы молекул р-рителя. Релтаксация среды к равновесию происходит по закону ехр(-t/тL), где t- время, тL- характеристика релаксац. способности р-рителя. Для воды, напр., тL = 0,25·10-12 с.

Сольватирующая способность р-рителя оценивается по ряду эмпирич. параметров с использованием эмпирич. шкал р-рителей. Иногда пользуются понятием "сила р-рителя", основанным на предположении о независимости сольвати-рующей способности р-рителя от св-в растворяемого в-ва. Одной из наиб. универсальных характеристик сольвати-рующей способности р-рителя является его диэлектрич. проницаемость e.

Впервые влияние р-рителя на кинетику р-ций этерифика-ции было обнаружено М. Бертло в 1854; впоследствии Н.А. Меншуткин установил (1890), что хим. р-цию нельзя рассматривать отдельно от среды, в к-рой она протекает. Возможность теоретич. расчета влияния р-рителя на реакц. способность и статич. св-ва молекул растворенного в-ва определяется гл. обр. разработанностью теории жидкого состояния (см. Жидкость). В рамках статистич. теории, являющейся основой совр. представлений о структурных и энергетич. св-вах жидкостей и р-ров, полный потенциал F взаимод. молекулы растворенного в-ва со средой, находящейся в термодинамич. равновесии, имеет для одноцент-ровых частиц (напр., атомов благородных газов) вид:

4075-23.jpg

где R-расстояние между частицами, f(R)-потенциал парного взаимод. молекул, g(R)- радиальная корреляц. ф-ция распределения, С-постоянная, зависящая, в частности, от плотности среды. Потенциал F позволяет определить энергию межмол. взаимод., если известны ф-ции f(R) и g(R). Применительно к изучению сольватации такой подход сопряжен с большими математич. трудностями, т. к. не разработана общая теория, позволяющая с достаточной точностью вычислять для реальных систем энергию межмол. взаимод. в широкой области изменения R. Разработаны более простые, в т. ч. модельные, подходы к расчету DHc и DGc, в частности макроскопич. (континуальные) и микроскопич. (дискретные) способы описания эффектов сольватации. Континуальные методы основаны на моделях М. Борна, Л. Онсагера, Д. Кирквуда. Своб. энергия сольватации молекулы в среде равна:

4075-24.jpg

где а-радиус полости, вырезаемой в результате внедрения молекулы растворенного в-ва в р-ритель, Qj, Qk - эффективные заряды на j-м и k-м атомах этой молекулы, N - число атомов в ней, Рn-полиномы Лежандра, описывающие соотв. монопольные, дипольные, октупольные взаимод. и эффекты более высоких порядков, Од-углы, образованные векторами rj и rk, определяющими положения атомов у и k. Частными случаями данного ур-ния являются ур-ния для своб. энергии сольватации иона DG0-ур-ние Борна:

4075-25.jpg

(Q-заряд иона) и ур-ние Онсагера (модель реактивного поля):

4075-26.jpg

где m-дипольный момент молекулы растворенного в-ва. Несмотря на широкое использование ур-ния Онсагера, ряд опытных данных не подтверждается расчетом, напр. линейная зависимость энтальпии и своб. энергии сольватации от дипольного момента m.

Более точные расчеты в рамках микроскопии, подходов получены с использованием методов Монте-Карло и мол, динамики. В методе мол. динамики с помощью ЭВМ численно решают классич. ур-ния движения Ньютона, считая известной потенц. энергию взаимод. молекул. Это позволяет "наблюдать" за движением отдельных молекул жидкости, определять фазовые траектории, а затем усреднять их по времени и находить значения требуемых термодинамич. и структурных ф-ций. Метод позволяет рассчитать статич. и динамич. св-ва р-ров, в т. ч. и для неравновесных процессов. В методе Монте-Карло состояния рассматриваемой системы частиц считаются случайными, задача же состоит в отборе наиб. вероятных конфигураций и послед. усреднении по этим конфигурациям разл. св-в. Ввиду этого метод приспособлен для расчета лишь равновесных величин. Развитие ЭВМ позволяет применять оба метода ко все более широкому кругу объектов. В результате оказывается возможным корректное разделение энтальпий и своб. энергий сольватации на физически обоснованные вклады, связанные с разл. взаимод., и анализ зависимостей между ними. Методы Монте-Карло и мол. динамики позволяют рассчитывать энтальпии сольватации с точностью, сравнимой е экспериментальной (5-10 кДж/моль). Однако пока они не позволяют учитывать взаимную поляризацию р-рителя и растворенного в-ва, а также структурную перестройку в р-ре. Эти эффекты возможно определить с помощью квантовохим. расчетов, к-рые позволяют прогнозировать строение и св-ва изолир. молекул и механизмы р-ций, что необходимо для корректного выделения вклада, обусловленного непосредственно влиянием р-рителя. Поверхности потенциальной энергии молекул и реагирующих систем в газовой фазе и в р-рах могут иметь принципиально разл. профиль.

Сольватация приводит к тому, что тип р-рителя изменяет скорость хим. р-ций (до 109 раз), определяет относит. устойчивость таутомеров, конформеров, изомеров, влияет на механизм р-ций. Положения кислотно-основных равновесий в значит. степени определяются сольватирующей способностью р-рителя. Подробнее о влиянии сольватации на физ.-хим", характеристики растворенных в-в и их реакц. способность см. в ст. Реакции в растворах.

На влиянии сольватации на характеристики электронных спектров поглощения и испускания основано явление, наз. сольватохромией.

Лит.: Бургер К., Сольватация, ионные реакции и комплексообразование в неводных средах, пер. с англ., М., 1984; Симкин Б. Я." Шейхет И. И., Квантовохямичсская и статистическая теория растворов. Вычислительные методы и их применение, М., 1989; Solvents and solvent effects in organic chemistry, ed. by Ch. Reichardt, N.Y., 1988. Б.Я. Симкин.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн