Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ПОЛУЭМПИРИЧЕСКИЕ МЕТОДЫ

ПОЛУЭМПИРИЧЕСКИЕ МЕТОДЫ квантовой химии, методы расчета мол. характеристик или свойств в-ва с привлечением эксперим. данных. По своей сути полуэмпирические методы аналогичны неэмпирическим методам решения ур-ния Шрё-дингера для многоатомных мол. систем, однако для облегчения расчетов в полуэмпирических методах вводятся дополнит. упрощения. Как правило, эти упрощения связаны с валентным приближением, т. е. основаны на описании лишь валентных электронов, а также с пренебрежением определенными классами молекулярных интегралов в точных ур-ниях того неэмпирич. метода, в рамках к-рого проводится полуэмпирич. расчет. Др. мол. интегралы (или их линейные комбинации) заменяются эмпирич. параметрами, значения к-рых определяются из условия совпадения расчетных и эксперим. характеристик для определенных опорных молекул.

Выбор эмпирич. параметров основан на обобщении опыта неэмпирич. расчетов, учете хим. представлений о строении молекул и феноменологич. закономерностей. В частности, эти параметры необходимы для аппроксимации влияния внутр. электронов на валентные, для задания эффективных потенциалов, создаваемых электронами остова, и т.п. Использование эксперим. данных для калибровки эмпирич. параметров позволяет устранить ошибки, обусловленные упомянутыми выше упрощениями, однако лишь для тех классов молекул, представители к-рых служат опорными молекулами, и лишь для тех свойств, по к-рым параметры определялись.

Наиб. распространены полуэмпирические методы, основанные на представлениях о мол. орбиталях (см. Молекулярных орбиталей методы, Орбиталь). В сочетании с ЛКАО-приближением это позволяет выразить гамильтониан молекулы через интегралы на атомных орбиталях cа. При построении полуэмпирических методов в мол. интегралах выделяют произведения орбиталей, зависящих от координат одного и того же электрона (дифференц. перекрывание), и пренебрегают нек-рыми классами интегралов. Напр., если нулевыми считаются все интегралы, содержащие дифференц. перекрывание cаcb при а . b, получается т. наз. метод полного пренебрежения дифференц. перекрыванием (ППДП, в англ. транскрипции CNDO-complete neglect of differential overlap). Применяют также частичное или модифицир. частичное пренебрежение дифференц. перекрыванием (соотв. ЧПДП или МЧПДП, в англ. транскрипции INDO- intermediate neglect of differential overlap и MINDO-modified INDO), пренебрежение двухатомным дифференц. перекрыванием - ПДДП, или neglect of diatomic differential overlap (NDDO), - модифицир. пренебрежение двухатомным перекрыванием (МПДП, или modified neglect of diatomic overlap, MNDO). Как правило, каждый из полуэмпирических методов имеет неск. вариантов, к-рые принято указывать в названии метода цифрой или буквой после косой черты. Напр., методы ППДП/2, МЧПДП/3, МПДП/2 параметризованы для расчетов равновесной конфигурации ядер молекулы в основном электронном состоянии, распределения заряда, потенциалов ионизации, энтальпий образования хим. соед., метод ЧПДП используется для расчета спиновых плотностей. Для расчета энергий электронного возбуждения применяют спектроскопич. параметризацию (метод ППДП/С). Распространено также использование в названиях полуэмпирических методов соответствующих программ для ЭВМ. Напр., один из расширенных вариантов метода МПДП называют Остинской моделью, как и соответствующую программу (Austin model, AM). Имеется неск. сотен разл. вариантов полуэмпирических методов, в частности разработаны полуэмпирические методы, аналогичные конфигурационного взаимодействия методу. При внеш. схожести разных вариантов полуэмпирических методов каждый из них можно применять для расчета лишь тех св-в, по к-рым проведена калибровка эмпирич. параметров.

В наиб. простых Полуэмпирич. расчетах каждая мол. орбиталь для валентных электронов определяется как решение одноэлектронного ур-ния Шрёдингера с оператором Гамильтона, содержащим модельный потенциал (псевдопотенциал) для электрона, находящегося в поле ядер и усредненном поле всех остальных электронов системы. Такой потенциал задают непосредственно с помощью элементарных ф-ций или основанных на них интегральных операторов. В сочетании с ЛКАО-приближением подобный подход позволяет для многих сопряженных и ароматич. мол. систем ограничиться анализом p-электронов (см. Хюккеля метод), для координац. соединений-пользоваться расчетными методами поля лигандов теории и кристаллического поля теории и т.п. При изучении макромолекул, напр. белков, или кристаллич. образований нередко пользуются полуэмпирическими методами, в к-рых электронное строение не анализируется, а определяется непосредственно поверхность потенциальной энергии. Энергию системы приближенно считают суммой парных потенциалов взаимодействия атомов, напр. потенциалов Морса (Морзе) или Леннард-Джонса (см. Меж молекулярные взаимодействия). Такие полуэмпирические методы позволяют проводить расчет равновесной геометрии, конформац. эффектов, энергии изомеризации и т.п. Нередко парные потенциалы дополняют определенными для отдельных фрагментов молекулы многочастичными поправками. Полуэмпирические методы такого типа, как правило, относят к молекулярной механике.

В более широком смысле к полуэмпирическим методам относятся любые методы, в к-рых определенные решением обратных задач параметры мол. системы используются для предсказаний новых эксперим. данных, построения корреляционных соотношений. В этом смысле полуэмпирическими методами являются методы оценки реакционной способности, эффективных зарядов на атомах и т. п. Сочетание полуэмпирич. расчета электронного строения с корреляц. соотношениями позволяет оценивать биол. активность разл. в-в, скорости хим. р-ций, параметры технол. процессов. К полуэмпирическим методам относятся и нек-рые аддитивные схемы, напр. применяемые в хим. термодинамике методы оценки энергии образования как суммы вкладов отдельных фрагментов молекулы.

Интенсивное развитие полуэмпирических методов и неэмпирич. методов квантовой химии делает их важными средствами совр. исследования механизмов хим. превращений, динамики элементарного акта хим. р-ции, моделирования биохим. и технол. процессов. При правильном использовании (с учетом принципов построения и способов калибровки параметров) полуэмпирические методы позволяют получить надежную информацию о строении и св-вах молекул, их превращениях.

Лит. см. при статьях Квантовая химия, Неэмпирические методы.

В. И. Пупышев.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн