Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


УСТАНОВЛЕНИЕ СТРОЕНИЯ МОНОСАХАРИДОВ

Идентификация

Итак, осуществлен гидролиз полисахарида и получены составляющие его моносахариды или метилированные сахара. Теперь надо установить их строение. Задача эта все еще достаточно сложна и трудоемка (хотя и проще, чем установление строения самого полисахарида). Поэтому, прежде чем непосредственно браться за ее решение, следует подумать, нельзя ли установить строение …, не занимаясь установлением строения? Часто оказывается, что можно. В арсенале органической химии есть такой прием, который позволяет прийти к определенным выводам о структуре молекулы без ее последовательной экспериментальной расшифровки. Этот прием называется идентификацией вещества.

Научный потенциал, накопленный человечеством к сегодняшнему дню, состоит не только в огромных общих знаниях, могущественных методах исследования и совершенных приборах. В него входят также сведения о точных, хорошо воспроизводимых физических характеристиках гигантского числа органических соединений, в том числе моносахаридов и их производных, строение которых уже было установлено определенно и надежно. И если нам удастся доказать, что полученный из неизвестного полисахарида моносахарид тождествен или, как чаще говорят, идентичен известному моносахариду, мы тем самым установим строение этого моносахарида. Доказательство идентичности двух веществидентификация – есть один из важнейших во всей органической химии принципов исследования, а применяемые для этой цели методы и приемы постоянно совершенствуются и развиваются. Как же практически идентифицировать органическое соединение, в частности моносахарид?

Прежде всего можно определить его физические константы. Самые обычные и легко измеряемые из них – температура плавления и удельное вращение. После этого пора обратиться к литературе – не был ли описан ранее моносахарид с такими константами? И если окажется, что был описан, у исследователя появляется, нет,не уверенность, но только основание для предположения о том, что его моносахарид идентичен известному, и, следовательно, право предположительно приписать ему определенную структуру. Почему же только предположительно? А вот почему.

Прежде всего, точность определения этих констант и их воспроизводимость сравнительно невелики. Реально обе эти величины могут быть измерены с помощью обычных приборов с ошибкой, достигающей 1-2 °. Сами же величины зависят от чистоты образца, а она может быть различной у нашего исследователя и у того, кто впервые описал это вещество в литературе. Так что даже для безусловно идентичных веществ расхождение в температурах плавления и величинах удельного вращения вполне может достигать 2-3 °. Температуры плавления моносахаридов, например, лежат обычно в интервале примерно 50-200 °. При допустимой ошибке в 3 ° это означает всего около 50 различных температур плавления. Иными словами, вероятность случайного совпадения этой константы – порядка 2%. Это, конечно, недопустимо много. Не намного лучше обстоит дело с удельным вращением. Для большинства моносахаридов удельные вращенияумещаются в интервале от -100 ° до +100 °, т.е. вероятность случайного совпадения удельного вращения разных соединений опыть около 1-2%. Таким образом, даже совпадение обеих этих констант для двух моносахаридов может оказаться случайным с вероятностью в несколько сотых процента. Такая вероятность ошибочного вывода об идентичности все еще велика, для того чтобы серьезный ученый мог ею удовлетвориться. Ко всему прочему нужно добавить, что очень многие моносахариды, а особенно метилированные сахара весьма трудно получить в кристаллическом состоянии, причем сделать это тем труднее, чем хуже очищено вещество и чем меньшим его количеством располагает исследователь. А если нет кристаллов, то нельзя и определить температуру плавления.

Остаются еще, конечно, и другие характеристики вещества: его спектры, цветные реакции, некоторые особенности химического поведения. Однако, во-первых, они обычно менее индивидуальны и характерны для данного соединения, во-вторых, далеко не для всех соединений с известной структурой описаны в литературе (в отличие от двух самых распространенных: температуры плавления и удельного вращения). Таким образом, «заочная» идентификация соединения по литературным данным – вещь мало надежная. Совсем другое дело – держатьв руках два образца: неизвестного вещества и известного, устроить им, так сказать, очную ставку. В научной литературе это называется «идентифицировать вещество путем прямого сравнения с заведомым образцом». Здесь возможности для надежной идентификации резко расширяются.

Прежде всего, существует общая закономерность: два разных вещества могут случайно иметь одинаковые температуры плавления, но их смесь обязательно будет плавиться при другой температуре. Только смесь двух идентичных веществ (которую в сущности вообще нельзя назвать смесью, разве что смесью двух образцов) имеет точно такую же температуру плавления, что и исходные компоненты. Так что отсутствие депрессии температуры плавления – чрезвычайно простой и очень надежный метод идентификации двух веществ при прямом сравнении. Для этого, однако, нужно иметь чистое кристаллическое вещество, а это не всегда удается.

В таком случае вступает в свои права комплекс мощных аналитических методов – хроматография. Это способ анализа веществ, основанных на их физическом разделения. Например, при хроматографии на бумаге вещества двигаются по хроматограмме с током растворителя с различными скоростями, индивидуальными и характерными для данного вещества в данных условиях. Последняя оговорка весьма существенна: в разных лабораториях и в разных руках точно воспроизвести абсолютные скорости – их называют хроматографическими подвижностями – весьма и весьма трудно. Поэтому здесь не обойтись литературными данными – нужно прямое сравнение двух образцов.

Огромное достоинство хроматографических методов в том, что они позволяют работать с очень малыми количествами вещества (например, порядка микрограмма) и, что еще важнее, позволяют идентифицировать не только мало очищенные вещества, но даже вещества, присутствующие в качестве компонентов сложных смесей. Последнее особенно существенно для разбираемой нами задачи, так как, например, гидролизат полисахарида может содержать несколько разных моносахаридов. И хроматография позволяет идентифицировать их без предварительного разделения.

Конечно, и хроматографические методы могут дать осечку: подвижности разных веществ могут и случайно совпасть. Однако хроматография – это очень гибкий метод. Можно использовать набор разных условий для анализа одной и той же пары веществ,а совпадение подвижностей в нескольких различных условиях – это уже событие, вероятность которого ничтожно мала.

Кажется, все? Проблема идентификации моносахаридов решена? Не тут-то было! В одном и очень важном для химии углеводов пункте хроматографические методы бессильны: они не позволяют отличать правое от левого. Мы можем, например, со всей надежностью идентифицировать хроматографически галактозу, но останемся в полном неведении относительно того, D- или L-галактозу мы имеем.

Значит, нужно сделать еще что-то. Тут два пути. Можно выделить моносахарид (или его производное) в индивидуальном состоянии и определить его удельное вращение. А можно воспользоваться ферментом, катализирующим ту или иную реакцию этого моносахарида – уж ферменты-то отличают правое от левого! Но ферментыреагенты тонкие и капризные. Надежный анализ с помощью ферментативной реакции требует проверки с применением образцов заведомых моносахаридов, вводимых в ту же реакцию с темже самым препаратом фермента. И вот тогда только у исследователя появляется действительная уверенность в том, что веществомоносахарид – идентифицировано.

Мы видели, какую большую роль при идентификации играет прямое сравнение с заведомым образцом. Спрашивается, а где его взять? Промышленность реактивов выпускает специальные наборы образцов многих природных веществ, и в частности моносахаридов (разумеется, самых обычных и распространенных). Но это минимум, который гораздо ниже «прожиточного» при развитой исследовательской работе. Поэтому каждый исследователь, а также исследовательский коллектив, стремятся создать свою собственную коллекцию образцов веществ, пополняют ее при любой возможности и берегут как зеницу ока. Поэтому, в частности, столь значительно повышается эффективность исследовательской работы в больших коллективах: многие проблемы легко решаются путем обмена образцами известных веществ. Наконец, образцы известных соединений являются предметом международного обмена и сотрудничества. Неудивительно, что ученые часто получают письма примерно такого содержания: «Глубокоуважаемый доктор N! Не могли бы вы прислать нам несколько миллиграммов такого-то вещества для идентификации?». И в ответ летят в авиаконвертах через океаны и континенты считанное число драгоценных кристалликов. Поэтому научная статья нередко кончается словами: «Авторы глубоко признательны доктору N, любезно предоставившему заведомый образец такого-то вещества». И тут есть за что благодарить: иной раз один такой кристаллик позволяет исследователю сэкономить многие месяцы, а то и годы труда.

Предыдущая страница | Следующая страница

СОДЕРЖАНИЕ


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн