Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


Историческое отступление

Мы обещали касаться только вполне современных методов исследования, и не без оснований: классику легко найти в любом учебнике. И все-таки хочется отсупить от этого принципа и описать методы, с помощью которых были впервые выяснены конфигурации ассиметрических центров важнейших моносахаридов. Это – классическая работа Эмиля Фишера. Изложим ее несколько упрощенно, стремясь сохранить главное – логику исследования.

Прежде всего о том, что уже было известно Фишеру и что предстояло узнать. Была известна бутлеровская структура (см. с. 8) нескольких моносахаридов, было также известно, что для некоторых из них возможны взаимные превращения путем определенных реакций и что изомерные альдозы отличаются конфигурацией ассиметричемких центров. Установить же нужно было относительные конфигурации этих центров. Экспериментально Фишер использовал главным образом две реакции.

1. Циангидриновый синтез, т.е. присоединение к альдозам синильной кислоты с последующим гидролизом нитрильной группы и восстановлением карбоксильной до альдегидной. Результатом этой реакции является удлинение углеродной цепи альдозы на одно звено и возникновение нового ассиметрического центра, вследствие чего из каждого моносахарида получается не один, а два новых моносахаридастереоизомеров по C-2. В общем виде эта последовательность показана на схеме:

2. Окисление азотной кислотой. При этом и альдегидная группа, и концевое CH 2 OH-звено окисляются до карбонильных групп. В результате молекула приобретает повышенную симметрию – происходит уравнивание концов, причем в зависимости от относительной конфигурации ассиметрических центров эта симметрия может оказаться полной или неполной. Ниже эта реакция показана на примере D-галактозы:

Фишер располагал тремя альдозами: глюкозой, маннозой и арабинозой. Для последней, если оперировать с сахарами D-ряда, принципиально возможны четыре конфигурации (4-7):

После окисления арабинозы азотной кислотой Фишер получил оптически деятельную, следовательно ассиметричную дикарбоновую кислоту. Это сразу исключало две структуры из четырех возможных. В самом деле, ожидаемые продукты из четырех возможных пентоз следующие (8-11):

Первые две из этих кислот обладают плоскостью симметрии (указана на схеме пунктиром) и, значит, должны быть оптически неактивны. Таким образом, этот эксперимент оставлял для кислоты только две возможные структуры: 10 и 11, а для арабинозы – только 6 и 7.

Путем циангидринного синтеза из арабинозы были получены две гексозы: глюкоза и манноза. Из этого следовало, что у последних конфигурация центров при C-3, C-4 и C-5 такая же, как в арабинозе (у ее C-2, C-3 и C-4 соответственно), и что различия между глюкозой и маннозой сводятся только к различию конфигурации C-2. Таким образом, глюкозе и маннозе могут соответствовать либо пара конфигураций 12 и 13 (если арабиноза- это 6), либо пара 14 и 15 (если арабиноза – это 7).

Для выбора между этими парами Фишер опять применил принцип уравнивания концов. Четырем гексозам 12-15 соответствуют четыре дикарбоновые кислоты (16-19):

Из этих четырех кислот только одна – 18 – обладает плоскостью симметрии и, следовательно, оптически недеятельна. Окислив глюкозу и маннозу, Фишер получил две оптически активные кислоты. Таким образом, глюкозе и маннозе не может соответствовать пара конфигураций 14 и 15, а соответствует только пара 12 и 13. Следовательно, для арабинозы (из которой, как мы помним, могут быть получены эти две гексозы) остается только одна возможная структура – 6.

Теперь Фишер уже знал, что глюкоза и манноза имеют конфигурацию 12 и 13, но еще не знал, какая из этих конфигураций отвечает глюкозе, а какая маннозе. Вопрос был решен аналогичным образом: последовательным применением циангидринного синтеза и окисления, которые приводили к образованию C 7 -дикарбоновых кислот. Из маннозы при этом были получены две оптически активные кислоты, что возможно только при исходной конфигурации 13 (читатель может сам вывести их структуры и доказать асимметрию), а из глюкозы – две кислоты одна из которых была оптически недеятельна. Такая симметричная структура – кислота 20 –могла возникнуть только из гексозы с конфигурацией 12. Таким образом, и последний вопрос этой серии – конфигурация глюкозы и маннозы – был блестяще разрешен Фишером.

Позднее аналогичным образом он установил относительные конфигурации остальных основных пентоз и гексоз и тем самым впервые создал научную основу всей химии углеводов.

Работа Фишера, опубликованная в 1891 году, даже по сегодняшним меркам должна быть оценена как первоклассное исследование – по безукоризненной логике, тщательности экспериментального выполнения и полной строгости и надежности заключений. В настоящее время асимметрия насыщенного углеродного атома есть не вызывающая сомнений школьная истина. Однако во времена Фишера это была лишь сравнительно недавно сформулированная (Вант-Гоффом и Ле Белем в 1874 г.) стереохимическая гипотеза, имевшая очень немного экспериментальных подтверждений даже для очень простых систем, содержащих один-два ассиметрических атома. Нужна была глубокая убежденность в ее справедливости, глубокая уверенность в применимости строгой логики к сложным органическим соединениям и в надежности и однозначности превращений, чтобы задумать, предпринять и блестяще довести до конца такое (кстати сказать, экспериментально весьма сложное) исследование. Поэтому работу Эмиля Фишера по установлению конфигурации моносахаридов смело можно отнести к истинно гениальным творениям, которые не только приводят к блистательным конкретным результатам, но и освещают путь своим глубоким идейным содержанием новые пути в целой области науки. Начиная с этой работы стереохимическая гипотеза превратилась в стереохимическую теорию – одно из наиболее фундаментальных обобщений органической химии.

Логический приемы, введенные Фишером, широко используются в структурных исследованиях до сих пор (правда, на иной химической основе). Приведем здесь только два примера, в основу которых положено уравнивание концов: сведение D-арабинозы (21) и D-ликсозы (7) к одному и тому же полиолу (22), и идентификацию 3,4-ди-О-метил-D-ксилозы (23), для которой заведомый образец труднодоступен, в виде полиола 24 с его оптическим антиподом 25, который образуется из более доступной 2,3-ди-О-метил-D-ксилозы (26):


В обоих примерах для перехода от альдоз к полиолам использовано восстановление боргидридом натрия. Видно, что в обоих случаях, при всем внешнем несходстве, применена стереохимическая логика, заимствованная из работы Фишера.

Теперь поясним, как устанавливают структуру и конфигурации моносахаридов и их метилированных производных в современных работах. Здесь решающую роль играют два метода – осколочная масс-спектрометрия для установления структур (без стереохимии) и спектроскопия ядерного магнитного резонанса (ЯМР) для выяснения конфигураций ассиметрических центров.

Предыдущая страница | Следующая страница

СОДЕРЖАНИЕ


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн