Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


АЦЕТИЛЕН

АЦЕТИЛЕН (от лат. acetum-уксус и греч. hyle - лес, дерево; вещество) (этин) СН1043-52.jpgСН, мол. м. 26,04; бесцв. газ; т. пл. -81°С/1277мм рт. ст., т. возг. -84,1°С; т. кип. -83,8°С; плотн. 1,0896 г/л (газ; 20°С; 101 кПа);1043-53.jpg Н°о6р -227,400 кДж/моль (газ; 298,15 К),1043-54.jpgН°сгор — 1307 кДж/моль; Сpo 44,036 Дж/(моль*К); давление пара жидкого ацетилена (МПа): 1,1 (-30°С), 2,6 (0°С), 5,4 (30°С); tкрит 35,2°С, pкрит 6,4 МПа; макс. т-ра кислородно-ацетиленового пламени 3150°С (при содержании ацетилена 45% по объему), воздушно-ацетиленовой смеси 2350 °С. Р-римость (объемы ацетилена) в 1 объеме р-рителя при 15°С и 101 кПа: в воде-1,15; ацетоне-25 (при 1,2 МПа-300; при -80°С и 0,1 МПа-2000); спирте-6; бензоле-4; уксусной к-те-6 (18°С); ДМФА -33,5 (25 °С).

Атомы углерода в ацетилене sp-гибридизованы. Они связаны одной1043-55.jpgи двумя1043-56.jpgсвязями, макс. плотности к-рых расположены в двух взаимно перпендикулярных областях, образуя цилиндрич. облако1043-57.jpgэлектронной плотности; за его пределами находятся атомы Н (см. рис.).
Ацетилен

Молекула ацетилена линейна; все 4 атома расположены на прямой. Расстояния С1043-59.jpgС и С—Н равны соотв. 0,1205 и 0,1059 нм. Энергия тройной связи 836 кДж/моль. В ИК-спектрах несимметричной ацетиленовой группы (RC1043-60.jpgСН) имеются полосы поглощения валентных колебаний при частотах1043-61.jpg 2260-2100 см-1, vС_H 3310-3300 см-1 и деформационных колебаний1043-62.jpg 700-610 см'1. В спектрах ЯМР хим. сдвиг протона составляет 2,0 м.д., ядер 13С-68 м.д. (для C2H5G1043-63.jpgCH). Ацетиленовая группа не поглощает УФ-излучение с длиной волны более 200 нм.

Для ацетилена характерны р-ции присоединения, к-рые происходят в две стадии: сначала образуются замещенные этилена, затем - замещенные алканов. Галогены присоединяются непосредственно, галогеноводороды - в присут. катализаторов (напр., CuCl, HgCl2):
1043-64.jpg

Эти р-ции используются при произ-ве тетрахлорэтилена, трихлорэтилена, винилхлорида и др. хлорсодержащих соединений.

Водород присоединяется в присут. катализаторов (Ni, Pt или др.): СН1043-65.jpgСН -> СН2=СН2 -> СН3СН3; вода - в присут. солей Hg2+ с образованием ацетальдегида (Кучерова реакция). Прямая гидратация происходит при пропускании смеси ацетилена и паров воды при 300-400°С над фосфатами тяжелых металлов. Гидратация ацетилена используется в пром-сти для произ-ва ацетальдегида и продуктов дальнейших его превращений - уксусной к-ты, ацетона, спирта. В присут. CuCl в кислой среде HCN присоединяется к ацетилену с образованием акрилонитрила. Ацетилен легко присоединяет сулему в виде р-ра в 10-12%-ной соляной к-те:
1043-66.jpg

Действием AsCl3 на это соединение получают1043-67.jpgхлорвинилдихлорарсин (люизит):
1043-68.jpg

Спирты присоединяются к ацетилену в присут. КОН, BF3 или HgO при 150-200°С Продукты р-ции - простые виниловые эфиры, используемые в произ-ве полимеров, смазочных масел, эмульгаторов и др. Аналогично к ацетилену могут присоединяться карбоновые к-ты (кат. - HgSO4, ацетаты Zn или Cd на активиров. угле), амины, амиды к-т, тиолы и др. с образованием виниловых соед., напр.:
1043-69.jpg

1043-70.jpg

Ацетилен легко присоединяет альдегиды и кетоны в присутствии щелочных катализаторов (реакция Фаворского). Большое практическое значение имеет реакция ацетилена с формальдегидом в присутствии ацетиленида Си (реакция Реппе):
1043-71.jpg

Образующиеся пропаргиловый спирт и 2-бутин-1,4-диол - исходные вещества в производстве 1,4-бутиленгликоля. При взаимод. ацетилена с СО и спиртами, NH3 или аминами в присут. Ni(CO)4 под давлением получают эфиры или амиды акриловой кислоты, используемые в синтезе полимеров:
1043-72.jpg

Карбонилирование м. б. использовано также для синтеза бензохинона:
1043-73.jpg

Под влиянием солей Cu(I) в водном НCl ацетилен димеризуется в винилацетилен, из к-рого получают хлоропрен. Над активным углем ацетилен гладко тримеризуется в бензол. В присут. Ni(CN)2 в тетрагидрофурана ацетилен превращается в циклооктатетраен С8Н8 (р-ция Реппе), в присут. Н2 над Ni - в изобутилен.

Для ацетилена характерны также р-ции, обусловленные слабокислым характером ацетиленовой группы (рКа1043-74.jpg25). При действии щелочных, щел.-зем. металлов (при нагревании, легче - в жидком NH3) или металлоорг. соед. образуются продукты замещения водорода в ацетилене металлами, т. наз. ацетилениды МС1043-75.jpgСН, к-рые энергично реагируют с водой, регенерируя ацетилен. С магнийорг. соед. ацетилена легко образует магнийгалогенопроизводные ацетилена (реактивы Иоцича). Ацетилениды Mg, Na, Li часто используют в орг. синтезе для введения ацетиленовой группы. Так, при взаимод. с алкилирующими агентами образуются алкилацетилены (напр., метилацетилен, 1-бутин, 1-пентин): RX + МС1043-76.jpgСН -> RC1043-77.jpgСН + MX. Дизамещенные ацетилениды Сu2С2 и Ag2C2 образуются при действии на ацетилен аммиачных р-ров соотв. солей Cu(I) и Ag; эти ацетилениды взрывоопасны, напр. Сu2С2 взрывается около 120°С. Образование Сu2С2 красного цвета часто используют для определения ацетилена. См. также Ацетиленовые комплексы переходных металлов.

При сжигании ацетилена выделяется большое кол-во тепла. На этом основана ацетилено-кислородная сварка черных металлов (на сварку расходуется около 30% производимого ацетилена).

Ацетилен-родоначальник ряда ацетиленовых углеводородов (см. табл.), хим. св-ва к-рых также определяются наличием тройной связи С1043-78.jpgС. Методы получения ацетилена в пром-сти:

1. Разложение карбида кальция водой:
1043-79.jpg

Поскольку р-ция экзотермична, необходим строгий контроль за т-рой, т. к. при перегреве ацетилен легко разлагается, что может привести к взрыву. Используют генераторы производительностью до 2000 м3/ч. Примеси (NH3, PH3, AsH3, сульфиды и др.) удаляют окислением водными р-рами NaCIO, FcCl3 или Н2СrO4.

2. Электрокрекинг прир. газа (метана с примесью гомологов) в электродуговых печах:
1044-1.jpg

Метан пропускают между металлич. электродами при нормальном давлении, т-ре 1600°С, времени контакта доли секунды; смесь образовавшихся газов резко охлаждают водой. Полученный газ содержит 12-15% по объему ацетилена (теоретически возможно 25%), к-рый выделяют р-рением в воде под давлением. Из 1000 м3 прир. газа получают 300 кг ацетилена, 26 кг этилена, 21 кг сажи и 1170 м3 Н2. Расход электроэнергии ок. 9 кВт-ч на 1 кг неочищенного ацетилена. 3. Термоокислит. крекинг (частичное окисление) прир. газа благодаря теплу, выделяющемуся при частичном сгорании метана (СН42 = 1 :0,65):
1044-2.jpg

4. Пиролиз прир. газа. Над огнеупорной насадкой пропускают смесь газа с воздухом, к-рая, сгорая, нагревает насадку до ~ 1500°С, а затем на насадке происходит пиролиз газа-метана, разбавленного обратным газом (после выделения ацетилена) и водяным паром в соотношении 1:2:6. Операции повторяют многократно.

СВОЙСТВА АЦЕТИЛЕНОВЫХ УГЛЕВОДОРОДОВ
Ацетиленовые углеводороды

В газах, полученных методами 3 и 4, содержание ацетилена редко достигает 20%. Выделить его из сложной смеси продуктов довольно трудно; чаще всего используют растворение в ДМФА или др. селективных р-рителях. Экономич. затраты на произ-во ацетилена термоокислит. крекингом и пиролизом вполне сравнимы с затратами по карбидному методу. Кроме того, эти методы выгодно отличаются от карбидного отсутствием прямого расхода электроэнергии и использованием в кач-ве сырья прир. газа. Производств. мощности по ацетилену в промышленно развитых странах составляют сотни тысяч т/год.

Ацетилен взрывается при т-ре ок. 500°С или давлении выше 0,2 МПа; КПВ 2,3-80,7%, т. самовоспл. 335°С Взрывоопасность уменьшается при разбавлении ацетилена др. газами, напр. N2, метаном или пропаном. Ацетилен обладает слабым токсин, действием; ПДК 0,3 мг/м3. Хранят и перевозят его в заполненных инертной пористой массой (напр., древесным углем) стальных баллонах белого цвета (с красной надписью "А") в виде раствора в ацетоне под давл. 1,5-2,5 МПа. Ацетилен открыт Э.Дэви в 1836. Впервые синтезирован в 1862 М. Бертло из угля и Н2.


===
Исп. литература для статьи «АЦЕТИЛЕН»: Ньюлэнд Ю.А., Фогт P.P., Химия ацетилена, пер. с англ., М., 1947; Федоренко Н. П.. Методы получения ацетилена. М.. 1958; Кононов Н. Ф.. Островский С. А.. Устынюк Л.А.. Новая технология некоторых синтезов на основе ацетилена, М., 1977; Котляревский И. Л., Карпицкая Л.Г., Химия ацетилена. Томск. 1981; Kirk-Othmer encyclopedia. 3 ed., v. 1, N. Y., 1978, p. 192-243; The chemistry of the carbon-carbon triple bond, ed. by S. Patai. N.Y.. 1978. И.Л.Кнунянц.

Страница «АЦЕТИЛЕН» подготовлена по материалам химической энциклопедии.

Еще по теме:

     © ХиМиК.ру




Реклама   Обратная связь   Дизайн