Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


РАСПЛАВЫ

РАСПЛАВЫ, жидкости при т-рах, относительно далеких от критич. точки, т.е. ближе к т-ре плавления. Природа расплавов определяется в осн. типом хим. связи. Различают металлические расплавы, ионные, полупроводниковые с ковалентными связями между атомами, органические расплавы с ван-дер-ваальсовы-ми связями, высокополимерные расплавы и др. По типу хим. соединений говорят о солевых расплавах, оксидных, оксидно-силикатных (шлаковых) и др. Особыми св-вами обладают эвтектические расплавы (см. Диаграмма состояния).

Для расплавов, как и для жидкости вообще, характерно наличие в структуре ближнего порядка при отсутствии обязательного для кристаллов дальнего порядка. Но в отличие от обычных жидкостей структура расплавов содержит кристаллопо-добные группировки - ассоциации, микрокристаллиты с разл. продолжительностью жизни, строение к-рых б. ч. связано со строением кристаллич. фазы. В расплавах присутствуют спе-цифич. образования - поры, икосаэдрич. частицы.

При плавлении может существенно изменяться тип хим. связи или, точнее, соотношение между вкладами разных типов связи. Так, мн. полупроводники при плавлении образуют расплавы с металлич. проводимостью. Нек-рые галогениды, напр. GaCl3, в кристаллич. состоянии имеющие ионную проводимость, дают расплав, состоящий в осн. из молекул (Ga2Cl6), в результате чего электрич. проводимость резко падает. Изменение типа связи иногда наблюдается и при изменении т-ры расплава. Напр., у Те вблизи т-ры плавления (142°С) наблюдаются цепочечные молекулы, но уже при 152°С он имеет металлич. характер.

Такие характеристики расплавов, как среднее координац. число (к. ч.) и межатомные расстояния, могут сильно отличаться от характеристик исходных кристаллич. фаз. Так, при плавлении большинства металлов к. ч. уменьшается (вследствие увеличения числа вакансий и дырок) на 10-15%, тогда как кратчайшие межатомные расстояния не меняются. У полупроводников (Si, Ge) к. ч. при плавлении увеличивается в 1,5 раза (вследствие заполнения пустот и усиления трансляц. движения), увеличиваются и межатомные расстояния. При плавлении солей уменьшаются и к. ч., и межатомные расстояния.

Для многокомпонентных расплавов характерны неравновесные, метастабильные состояния, генетически связанные со структурой исходных твердых фаз. Часто наблюдается сильный гистерезис св-в при изменении т-ры, а также зависимость строения и св-в расплавов от т-ры и продолжительности выдержки, скорости изменения т-ры, материала контейнера, содержания примесей.

Расплавы часто имеют сложный состав. Так, ионные расплавы (расплавы солей, галогенидов металлов, щелочей, оксидов, халькогенидов, шлаковые расплавы) в разл. соотношениях содержат как простые и комплексные ионы разного знака, так и недиссоциированные и полимерные молекулы, а также своб. объемы (дырки, дислокации). В силикатных (шлаковых) расплавах могут одновременно присутствовать как изолир. кремнекислородные тетраэдры, так и состоящие из них цепи, кольца, сетки и каркасы. В ионных расплавах возможны разнообразные хим. р-ции-окислит.-восстановительная, комплексообразование, сольватация и др.

Такая сложная картина вида частиц и природы связи не позволяет предложить однозначную модель структуры расплавов. В частности, для описания, напр., шлаковых расплавов находят применение различные, часто взаимно исключающие модели, многие из к-рых отвечают представлениям о р-рах. Используются как ионные, так и мол. представления, теория регулярных р-ров и теория совершенных ионных р-ров, модель ассоциир. р-ров, полимерная модель и др. Ни одна из моделей не учитывает всех видов компонентов расплавов и их возможных взаимодействий. Но модели позволяют интерпретировать те или иные св-ва расплавов, в нек-рых случаях позволяют их рассчитать.

В металлургии расплавы являются как промежут. и побочными продуктами (шлаки-силикатно-оксидные расплавы, штейны сульфидные расплавы, шпейзы - арсенидные), так и конечными (металлические расплавы). Расплавы используют как электролиты для получения и рафинирования металлов, нанесения покрытий. В виде расплавов получают большинство сплавов. Из простых и сложных расплавы выращивают монокристаллы, эпитаксиальные пленки. Металлич., оксидные и солевые расплавы используют как катализаторы. Солевые расплавы применяют в отжиговых и закалочных ваннах, высокотемпературных топливных элементах, как теплоносители, флюсы при пайке и сварке металлов, как реакц. среды в неорг. и орг. синтезе, как поглотители, экстрагенты и т.д. Из соответствующих расплавов получают силикатные, фторидные и др. спец. стекла, а также аморфные металлы.

Лит.. Ленинских Б. М., Манаков А. И., Физическая химия оксидных и оксифторидных расплавов, М., 1977; Волков С. В., Грищенко В. Ф., Делимарский Ю. К., Координационная химия солевых расплавов. К.. 1977; Ватолин Н. А., Пастухов Э. А., Дифракционные исследования строения высокотемпературных расплавов, М., 1980; Делимарский Ю.К., Химия ионных расплавов, К., 1980; У ббелоде А. Р., Расплавленное состояние вещества, пер. с англ., М., 1982; Полтавцев Ю. Г., Структура полупроводниковых расплавов, М., 1984; Белащенко Д. К., Структура жидких и аморфных металлов, М., 1985; Ватолин Н. А., "Расплавы", 1987, т. 1, в. 1, с. 5-17; Филиппов Л. П., Свойства жидких металлов, М., 1988; Витинг Л. М., Высокотемпературные растворы-расплавы, М., 1991. П. И. Федоров.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн