Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ПОЛИАЦЕТИЛЕН

ПОЛИАЦЕТИЛЕН [—CH=CH-]n или (CH)n, полимер ацетилена. Твердый реактопласт; в зависимости от метода получения - черный порошок, сероватый пористый материал, серебристые или золотистые пленки; плотн. 0,04-1,1 г/см , степень кристалличности 0-95%. Известны цис- и транс-формы полиацетилена; цис-форма при нагр. до 100-1500C переходит в транс-форму. Полиацетилен не раств. ни в одном из известных орг. р-рителей.

Электрофиз. и хим. св-ва зависят от метода получения и морфологии полиацетилена. Наиб. подробно изучены пленки. Последние (полиацетилен цис-формы)могут вытягиваться под нагрузкой 15-20 МПа (макс. удлинение в 8 раз). Прочность пленок 3560-13.jpg до 38 МПа. Полиацетилен-полупроводник (уд. электропроводность 10-7 и 10-3 Ом-1·м-1 соотв. для цис- и транс-форм). Электронная структура транс-формы полиацетилена характеризуется наличием неспаренных электронов, что объясняется нарушением чередования одинарных и двойных связей в цепи. Подвижность таких дефектов определяет большинство электрофиз. характеристик полиацетилена.

Допирование полиацетилена (введение небольших кол-в примесей) осуществляется при его взаимод. с сильными донорами или акцепторами электронов. В результате изменяется структура полиацетилена и его электропроводность приближается к электропроводности металла (см. Металлы органические, а также Поливинилены).

Применяют в основном хим. и электрохим. методы допирования. По первому из них пленки полиацетилена обычно обрабатывают парами допирующего агента или погружают в его р-р. Допирующими агентами служат щелочные металлы, галогены, к-ты Льюиса. По второму методу через р-ры солей пропускают постоянный электрич. ток, используя в качестве электродов пленки полиацетилена. В обоих случаях протекают окислит.-восстановит. р-ции, напр.:

3560-14.jpg

Электрохим. ячейки с электродами из пленок полиацетилена обладают большой электрохим. емкостью и плотностью тока. Напр., для ячейки полиацетилен - Li с электролитом LiClO4 в пропиленкарбо-нате электрохим. емкость в пересчете на полимерный электрод составляет 250 (Вт · ч)/кг, плотн. тока 50-200 мА/см2.

Параметры кристаллич. структуры допированного полиацетилена зависят от типа допирующего агента, но в большинстве случаев они близки соед. включения графита (см. Графита соединения). Электропроводность допированного полиацетилена также зависит от типа допирующего агента и увеличивается с глубиной допирования. Макс. электропроводность, равная 1,5· 107-1м-1, получена у полиацетилена, допированного I2.

Получают полиацетилен полимеризацией ацетилена или полимерана-логичными превращ. из насыщ. полимеров. Осн. методы: 1) пропускание ацетилена над р-ром катализатора Al(C2H5)3-Ti(OC4H9)4 в орг. р-рителе (напр., гептан, толуол) при т-рах от -800C до 1800C. Полиацетилен формируется на пов-сти р-ра в виде пленки, состоящей из фибрилл диаметром 20-50 нм; плотн. 0,4-0,7 г/см3.

2) Пропускание ацетилена в р-р катализатора Со (NO 3)2-NaBH4 в C2H5OH при т-рах от -700C до -400C. Полиацетилен образуется в виде геля или суспензии, из к-рых можно формовать пленки поливом, напылением, фильтрованием и др. способами. Пленки состоят из фибрилл, близких по структуре к полученным по первому методу; плотн. 0,3-0,7 г/см3. Обоими методами пленки полиацетилен можно получать на пов-стях разл. материалов, нанося на них тонкие слои р-ра катализатора, над к-рыми пропускают ацетилен. Первый метод предложен Ш. Ширакавой с сотрудниками в 1971, второй-Jl. Латинжером в 1960.

3) Двустадийный метод, предложенный Дж. Эдуардсом и В. Фестом из г. Дарем (Durham, Великобритания; неправильная транскрипция - Дурхем) в 1980. Вначале получают форполимер полимеризацией 6,8-бис-(трифторметил)три-цикло[4.2.2.0]дека-7,9-триена в присут. WCl6-(CH3)4Sn в хлорбензоле. Из форполимера поливом формуют пленки, к-рые подвергают нагреванию; при 40-1000C от форполимера отщепляется 1,2-бис-(трифторметил)бензол и образуется полиацетилен. Пленки полиацетилена имеют низкую кристалличность, не-фибриллярную морфологию; плотн. 1,05 г/см3.

Все три метода были многократно модифицированы, однако в литературе полиацетилены, полученные этими методами, принято наз. ширакавским, латинжеровским и дурхемовским.

Полиацетилен можно применять для создания источников тока и ионных конденсаторов, работающих на принципе электрохим. допирования, как фотопреобразователи и солнечные батареи, заменители цветных металлов. Однако из-за трудностей переработки и в связи с изменением св-в со временем полиацетилены пока не нашли широкого практич. применения. Создание перерабатываемых полиацетиленов связано в осн. с получением привитых и блоксополимеров полиацетиленов и композиций полиацетиленов с насыщ. полимерами.

Впервые полиацетилен был получен Дж. Наттой в 1957.

Лит. см. при ст. Поливинилены. В. М. Кобрянский.

Еще по теме:
___

     © ХиМиК.ру




Реклама   Обратная связь   Дизайн