Кремний
КРЕМНИЙ (Silicium) Si, химический элемент IV гр. периодич. системы, ат. н. 14, ат. м. 28,0855. Состоит из трех стабильных изотопов 28Si (92,27%), 29Si (4,68%) и 30Si (3,05%). Поперечное сечение захвата тепловых нейтронов 1,3.10-29 м2. Конфигурация внеш. электронной оболочки 3s23p2; степень окисления +4 (наиб. устойчива), +3, +2 и +1; энергии ионизации при последоват. переходе от Si° к Si4+ соотв. 8,1517, 16,342, 33,46 и 45,13 эВ; сродство к электрону 1,22 эВ; электроотрицательность по Полингу 1,8; атомный радиус 0,133, ионный радиус Si4+ (в скобках указаны координац. числа) 0,040 нм (4), 0,054 нм (6), ковалентный - 0,1175 нм. Кремний-второй после кислорода по распространенности в земной коре элемент (27,6% по массе). В своб. состоянии в природе не встречается, находится преим. в виде SiO2 (см. Кремния диоксид) или силикатов. В виде SiO2 кремний входят в состав растит. и животных организмов (напр., скелетные части).Свойства. Компактный кремний- в-во серебристо-серого цвета с металлич. блеском. Кристаллич. решетка устойчивой модификации кубич. гранецентрированная типа алмаза, а=0,54307 нм, пространств. группа Fd3m, z=4. При высоких давлениях существуют др. полиморфные модификации: при 20 ГПа-кремний I с тетрагон. решеткой (а=0,4686 нм, с=0,2585 нм), выше 20 ГПа-кремний II с кубич. (а=0,644 нм) и кремний III с гексагон. (а=0,380 нм, с=0,628 нм). При кристаллизации из газовой фазы на пов-стях с т-рой ниже 600 °С образуется аморфный кремний. Для кристаллич. Si т. пл. 1415 °С (плавится с уменьшением объема на 9%), т. кип. 3249 °С; плотн. 2,33 г/см3; C0p 20,16 Дж/(моль.К); DH0пл 49,9 кДж/моль, DH0исп 445,2 кДж/моль; S298 18,9 Дж/(моль.К); давление пара 0,046 Па (1415 °С); температурный коэф. линейного расширения 3,72.10-6К-1 (291-1273 К) и -.0,6.10-6 К-1 (84 К); теплопроводность 95,5 Вт/(м.К); р 2,4-107 Ом м (25 °С); т-ра Дебая 645 К; e 12; диамагнетик, магн. восприимчивость — 3,9.10-6. При обычных условиях кремний хрупок, выше 800 °С становится пластичным. Кремний прозрачен для И К излучения при длинах волн l>1 мкм; коэф. преломления 3,565 (l=1,05 мкм), 3,443 (l=2,6 мкм), 3,45 (l= 2-10 мкм); отражат. способность 0,3 (l>1,5 мкм). Кремний - полупроводник; ширина запрещенной зоны 1,21 эВ при т-ре ок. 0 К и 1,09 эВ при 300 К; концентрация носителей тока в кремнии с собственной проводимостью 1,5-1016 м-3 (300 К); температурная зависимость подвижности электронов и дырок [м2/(В.с)] определяется соотв. выражениями: mn=4,0.105Т-2,6 (300[T[400 К) и mр = 2,5.104T-2,3 (150[T[400 К); при 300 К mn= 0,145 м2/(В.с), mp=0,048 м2/(В.с), коэф. диффузии электронов 3,5.10-3 м2/с, дырок - 1,3.10-3 м2/с. Электрофиз. св-ва кремния зависят от природы и концентрации присутствующих примесей и структурных дефектов. Для получения монокристаллов кремния с дырочной проводимостью используют легирующие добавки В, Al, Ga, In (акцепторные примеси), с электронной проводимостью - Р, As, Sb (донорные примеси). Примеси Аu, Сu, Fe, Mn, V и нек-рые др. существенно снижают время жизни носителей тока в монокристаллах кремния. Макс, р-римость примесей в кремнии наблюдается при 1200-1300 °С и м. б. грубо оценена по значению коэф. распределения между твердым кремнием и его расплавом. Акцепторные примеси в кремнии имеют большие значения коэф. диффузии, чем донорные. Ряд примесей (Li, Сu, Аu) диффундирует по междоузлиям кристаллич. решетки с очень высокими скоростями. Для определения содержания примесей в кремнии высокой чистоты используют прецизионные методы: спектральный и активационный анализ, метод ЭПР и др.
Получение. Кремний производят восстановлением расплава SiO2 углеродом в дуговых печах при 1800°С. Чистота техн. продукта после спец. кислотной обработки ок. 99,9%. Очень небольшие кол-ва кремния получают электролизом р-ров Na2SiF6 или K2SiF6 в расплавах. Для получения кремния высокой чистоты техн. продукт хлорируют до SiQ4 или SiHCl3. Эти хлориды подвергают глубокой очистке ректификацией, сорбцией, путем частичного гидролиза и спец. термич. обработок, а затем восстанавливают при 1200-1300 °С высокочистым Н2 в установках из нержавеющей стали или непрозрачного кварцевого стекла. Восстанавливаемый кремний осаждают на прутки из кремния высокой чистоты. Др. пром. метод получения кремния высокой чистоты основан на разложении ок. 1000 °С SiH4, предварительно очищенного ректификацией. SiH4 синтезируют взаимод. Mg2Si с соляной или уксусной к-той, диспропор-ционированием SiH(OC2H5)3 в присут. Na или р-цией LiAlH4 с SiQ4 в эфире. Перечисл. методами получают кремний с суммарным содержанием остаточных примесей 10-7-10-8 % по массе. Монокристаллы кремния выращивают по методу Чохральского или бестигельной зонной плавкой (см. Монокристаллов выращивание). В первом случае процесс проводят в кварцевых тиглях в вакууме или инертной атмосфере с применением нагревателей из особо чистого графита. Масса исходной загрузки 60-100 кг, диаметр получаемых монокристаллов до 0,15 м, длина до 1,5-2,0 м. Зонную плавку проводят в глубоком вакууме или атмосфере особо чистого Н2; этим способом получают наиб. чистые монокристаллы. Диаметр монокристаллов до 0,125 м, длина до 1,5 м. Легируют монокристаллы непосредственно в процессе выращивания. Для получения однородных монокристаллов, легированных фосфором, их часто облучают медленными нейтронами [

Определение. Качественно кремний обнаруживают по образованию (преим. в кислых средах) коллоидных р-ров гидратированного SiO2, окрашенных солей кремнемолибденовой к-ты H4[Si(Mo3O10)4]. Макроколичества кремния (не менее 0,1% по массе) определяют гравиметрически, титриметрически и фотометрически. Гравиметрич. методы основаны на способности кремния образовывать гель H2SiO3, к-рый затем высушивают и взвешивают. При титриметрич. определении кремний переводят в H2SiF6, титруют щелочью или осаждают в виде малорастворимых солей H4[Si(Mo3O10)4] и определяют Мо в осадке. Большинство фотометрич. методов основано на переводе бесцв. H2SiO3 в желтую кремнемолибденовую к-ту, к-рую и определяют. Микроколичества кремния определяют след. методами: эмиссионным спектральным (до 1-10-5 %), нейтронно-активационным (до 1.10-6 %), масс - спектрометрич. (до 1.10-б %), атомно-абсорбционным с непламенной атомизацией (до 1.10-4 %). Применение. Кремний-один из осн. полупроводниковых материалов в электронике. Приборы на его основе могут работать при т-рах до 200 °С. Его используют для изготовления интегральных схем, диодов, транзисторов, солнечных батарей, фотоприемников, детекторов частиц в ядерной физике и др., а также линз в приборах ИК техники. В металлургии кремний применяют как восстановитель (для получения силико-марганца, силикоалюминия и др.), при произ-ве ферросилиция, для раскисления - удаления растворенного в расплавленных металлах кислорода. Кремний-компонент электротехн. и др. сталей, чугунов, бронз, силуминов. Кремний и его соед. используют для получения кремнийорг. производных и силицидов ряда металлов. a-Si:H применяют для изготовления солнечных батарей, полевых транзисторов и др. Мировое произ-во кремния (без СССР) для нужд полупроводникового приборостроения составляет ок. 5000 т/год поликристаллич. кремния и ок. 2200 т/год монокристаллов (1984). Кремний-биогенный элемент. Он необходим для нормального роста и развития человека, животных, растений и микроорганизмов: является структурным элементом соединит. ткани, связывая макромолекулы мукополисахаридов и коллагена, играет существ. роль в метаболизме мн. растений и морских организмов, влияет на скорость минерализации и препятствует возникновению атеросклероза. Соед. кремния токсичны. Вдыхание мельчайших частиц пыли SiO2 и др. соед. кремния (напр., асбеста) вызывает опасную профессиональную болезнь - силикоз. Кремний получен впервые Ж. Л. Гей-Люссаком и Л. Ж. Тенаром в 1811.
===
Исп. литература для статьи «КРЕМНИЙ»: Реньян В. Р.. Технология полупроводникового кремния, пер. с англ., М., 1969; Медведев С. А., Введение в технологию полупроводниковых материалов, М., 1970; Мильвидский М. Г., Полупроводниковые материалы в современной электронике, М., 1986; Нашельский А. Я.. Технология полупроводниковых материалов, М., 1987. М. Г. Мильвидский.
Страница «КРЕМНИЙ» подготовлена по материалам химической энциклопедии.