Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ТЕРМОДИНАМИЧЕСКИЕ ПОТЕНЦИАЛЫ

ТЕРМОДИНАМИЧЕСКИЕ ПОТЕНЦИАЛЫ, ф-ции параметров состояния макроскопич. системы (т-ры Т, давления р, объема V, энтропии S, чисел молей компонентов ni, хим. потенциалов компонентов m, и др.), применяемые гл. обр. для описания термодинамического равновесия. Каждому термодинамическому потенциалу соответствует набор параметров состояния, наз. естественными переменными.

Важнейшие термодинамические потенциалы: внутренняя энергия U (естественные переменные S, V, ni); энтальпия Н= U — (— pV) (естественные переменные S, p, ni); энергия Гельмгольца (свободная энергия Гельмгольца, ф-ция Гельмгольца) F = = U — TS (естественные переменные V, Т, ni); энергия Гиббса (своб. энергия Гиббса, ф-ция Гиббса) G=U — — TS — (— pV) (естественные переменные p, Т, ni); большой термодинамич. потенциал(естественные переменные V, Т, mi).4108-1.jpg

Термодинамические потенциалы могут быть представлены общей ф-лой

4108-2.jpg

где Lk - интенсивные параметры, не зависящие от массы системы (таковы Т, p, mi), Xk-экстенсивные параметры, пропорциональные массе системы (V, S, ni). Индекс l = 0 для внутренней энергии U, 1-для H и F, 2-для G и W. Термодинамические потенциалы являются ф-циями состояния термодинамической системы, т.е. их изменение в любом процессе перехода между двумя состояниями определяется лишь начальным и конечным состояниями и не зависит от пути перехода. Полные дифференциалы термодинамических потенциалов имеют вид:

4108-3.jpg

Ур-ние (2) наз. фундаментальным ур-нием Гиббса в энергетич. выражении. Все термодинамические потенциалы имеют размерность энергии.

Условия равновесия термодинамич. системы формулируются как равенство нулю полных дифференциалов термодинамических потенциалов при постоянстве соответствующих естественных переменных:

4108-4.jpg

Термодинамич. устойчивость системы выражается неравенствами:

4108-5.jpg

Убыль термодинамических потенциалов в равновесном процессе при постоянстве естественных переменных равна максимальной полезной работе процесса А:

4108-6.jpg

При этом работа А производится против любой обобщенной силы Lk, действующей на систему, кроме внеш. давления (см. Максимальная работа реакции).

Термодинамические потенциалы, взятые как ф-ции своих естественных переменных, являются характеристическими ф-циями системы. Это означает, что любое термодинамич. св-во (сжимаемость, теплоемкость и т. п.) м. б. выражено соотношением, включающим только данный термодинамический потенциал, его естественные переменные и производные термодинамических потенциалов разных порядков по естественным переменным. В частности, с помощью термодинамических потенциалов можно получить уравнения состояния системы.

Важными св-вами обладают производные термодинамических потенциалов. Первые частные производные по естественным экстенсивным переменным равны интенсивным переменным, напр.:

4108-7.jpg

[в общем виде: (9Yl/9Хi) = Li]. И наоборот, производные по естественным интенсивным переменным равны экстенсивным переменным, напр.:

4108-8.jpg

[в общем виде: (9Yl/9Li) = Xi]. Вторые частные производные по естественным переменным определяют мех. и тер-мич. св-ва системы, напр.:

4108-9.jpg

Т.к. дифференциалы термодинамических потенциалов являются полными, перекрестные вторые частные производные термодинамических потенциалов равны, напр. для G(T, p, ni):

4108-10.jpg

Соотношения этого типа называются соотношениями Максвелла.

Термодинамические потенциалы можно представить и как ф-ции переменных, отличных от естественных, напр. G(T, V, ni), однако в этом случае св-ва термодинамических потенциалов как характеристич. ф-ции будут потеряны. Помимо термодинамических потенциалов характеристич. ф-циями являются энтропия S (естественные переменные U, V, ni), ф-ция Массье Ф1 =4108-11.jpg (естественные переменные 1/Т, V, ni), ф-ция Планка 4108-12.jpg(естественные переменные 1/Т, p/Т, ni).

Термодинамические потенциалы связаны между собой ур-ниями Гиббса-Гельмгольца. Напр., для H и G

4108-13.jpg

В общем виде:

4108-14.jpg

Термодинамические потенциалы являются однородными ф-циями первой степени своих естественных экстенсивных переменных. Напр., с ростом энтропии S или числа молей ni пропорционально увеличивается и энтальпия Н. Согласно теореме Эйлера, однородность термодинамических потенциалов приводит к соотношениям типа:

4108-15.jpg

В хим. термодинамике, помимо термодинамических потенциалов, записанных для системы в целом, широко используют среднемолярные (удельные) величины (напр.,4108-16.jpg, парциальные молярные величины [напр., стандартные изменения термодинамических потенциалов в к.-л. процессе.4108-17.jpgнапр., стандартное изменение энтальпии при хим. р-ции равно разности энтальпий продуктов и исходных в-в, когда и те и другие находятся при заданных (выбранных) условиях, чаще всего при определенном внеш. давлении. Важные стандартные величины-стандартные энтальпии образования хим. соед.4108-18.jpg, энергии Гиббса образования хим. соед. 4108-19.jpg и т.п.

В статистической термодинамике пользуются аналогами энергии Гельмгольца и большого термодинамич. потенциала, к-рым отвечают соответственно канонич. и макрокано-нич. распределения Гиббса. Это позволяет рассчитывать термодинамические потенциалы для модельных систем (идеальный газ, идеальный р-р) по молекулярным постоянным в-ва, характеризующим равновесную ядерную конфигурацию (межъядерные расстояния, валентные и торсионные углы, частоты колебаний и т. п.), к-рые м. б. получены из спектроскопич. и др. данных. Возможен расчет термодинамических потенциалов через сумму по состояниям Z (интеграл по состояниям). Подобный подход позволяет установить связь термодинамических потенциалов с молекулярными постоянными в-ва. Вычисление суммы (интеграла) Z для реальных систем-весьма сложная задача, обычно статистич. расчеты применяют для определения термодинамических потенциалов идеальных газов.

Лит.: Кричевский И. Р., Понятия и основы термодинамики, М., 1962; Мюнстер А., Химическая термодинамика, пер. с нем., М., 1971.

М. В. Коробов.

___

     © ХиМиК.ру




Реклама   Обратная связь   Дизайн