Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


СУРЬМА

СУРЬМА (от тур. surme; лат. stibium) Sb, хим. элемент V гр. периодич. системы, ат. н. 51, ат. м. 121,75. Природная сурьма-смесь двух изотопов: 121Sb (57,25%) и 123Sb (42,75%). Поперечное сечение захвата тепловых нейтронов 5,7 x 10-28 м2. Конфигурация внеш. электронной оболочки атома 5s25p3; степени окисления +3 и +5, редко — 3; энергии ионизации при последоват. переходе от Sb0 к Sb5+ 8,64, 16,5, 25,3, 44,1, 60 эВ; сродство к электрону 0,94 эВ; электроотрицательность по Полингу 1,9; атомный радиус 0,161 нм, ионные радиусы, нм (в скобках указаны коорди-нац. числа): Sb3+ 0,090 (4), 0,94 (5), 0,090 (6), Sb5+ 0,074 (6).

Содержание сурьмы в земной коре 5·10-5% по массе, в морской воде менее 5·10-4мг/л. Известно ок. 120 сурьмяных минералов, из них важнейшие-антимонит Sb2S3, самородная сурьма, тетраэдрит Cu12Sb4S13, джемсонит Pb4FeSb6S14, бертьерит FeSb2S4, валентинит и сенармонтит Sb2O3, сер-вантит Sb2O4, кермезит Sb2S2O. Наряду с собств. рудами (антимонитовыми или с самородной сурьмой) используют сурь-мяно-ртутные, медно-сурьмяные (тетраэдритовые), золото-сурьмяные, сурьмяно-вольфрамовые руды. Попутно сурьму извлекают из свинцовых концентратов, полученных из по-лиметаллич. руд.

Свойства. Сурьма-серебристо-белый металл с синеватым оттенком, грубозернистого строения. При обычном давлении существует SbI, кристаллич. решетка тригональная (ром-боэдрич.) слоистая, а — 0,45064 нм, a = 57,1°, z = 2, пространств. группа R3m. При давлении ~5,5 ГПа SbI превращ. в кубич. модификацию SbII, при 8,5 ГПа-в гексагональную SbIII, при давлениях выше 28 ГПа-в SbIV.

Известны три аморфные модификации сурьмы. Желтая сурьма образуется при действии О2 на жидкий SbH3; содержит химически связанный Н. При нагр., а также при освещении видимым светом переходит в черную сурьму с плотн. 5,3 г/см3, к-рая м. б. получена при конденсации паров сурьмы; черная сурьма обладает полупроводниковыми св-вами. Взрывчатая сурьма-серебристо-белая, с металлич. блеском; плотн. 5,64-5,97 г/см3; образуется при электролизе SbCl3 при малой плотности тока; содержит связанный Сl; взрывается при ударе и трении. Черная сурьма при нагр. до ~400°С без доступа воздуха, а взрывчатая сурьма при растирании или ударе со взрывом превращ. в металлическую сурьму.

Для металлической сурьмы: т. пл. 630,5 °С, т. кип. 1634 °С; плотн. 6,69 г/см3, для жидкой сурьмы (при т-ре плавления) 6,65 г/см3; 4095-2.jpg 25,2 Дж/(моль·К); 4095-3.jpg 20,1 кДж/моль,4095-4.jpg 124,4 кДж/моль;4095-5.jpg45,7 Дж/(моль · К); ур-ния температурной зависимости давления пара: для кристаллической сурьмы lgp(мм pт.cт.)=40,916-13570/T+8,592lgT + 1,521T (298-904 К), для жидкой сурьмы lgр(мм рт.ст.) = 3,442-6007/T-- 0,789lgT(904-1907 К), в парах в осн. присутствуют молекулы Sb, и Sb4; температурный коэф. линейного расширения 9,2·10-6 K-1 (273 К); теплопроводность 18,8 Вт/(м·К) при 298 К; r 0,39 мкОм·м (273 К), температурный коэф. r 4,73·10-3 K-1 (273-373 К); т-ра перехода в сверхпроводящее состояние 2,7 К; диамагнитна, магн. восприимчивость —0,81·10-9. Твердость по Моосу 3, по Бринеллю 260 МПа; модуль упругости 55,98 ГПа; dраст 5 МПа, s ж 84 МПа. Хрупка, но выше 310 °С становится пластичной. Монокристаллы высокой чистоты пластичны.

Сурьма устойчива на воздухе, выше ~600°С окисляется с образованием Sb2O3 (см. Сурьмы оксиды). Не реагирует с N2, С, Si, В. Активно реагирует с галогенами, кроме F2, измельченная горит в атмосфере Сl2 (см. Сурьмы галогениды). При сплавлении соединяется с S, Sе, Те (см. Сурьмы халько-гениды), Р. При сплавлении с большинством металлов образует антимониды. Не реагирует с соляной и фтористоводородной к-тами, разб. H2SO4. Раств. в конц. Н24 с образованием Sb2(SО4)3, конц. HNO3 окисляется до сурьмяной к-ты H[Sb(OH)6]. Легко раств. в царской водке, в смеси азотной и винной к-т. Р-ры щелочей и NH3 на сурьму не действуют, расплавл. щелочи ее растворяют с образованием антимонатов.

Соли сурьмы легко гидролизуются. Осаждение гидроксисолей начинается при рН 0,5-0,8 для Sb(III) и рН 0,1 для Sb(V), полное осаждение достигается соотв. при рН 2,2 и 1. Соед., образующиеся при гидролизе Sb(III), содержат катион анти-монил SbO+.

Оксидам, галогенидам, халькогенидам сурьмы, а также анти-монидам посвящены отдельные статьи. Из прочих соединений сурьмы наиб. важны следующие. Гидрид (стибин) SbН3-бесцв. газ; т. пл. -92,4°С, т. кип. — 18,3°С; получают действием НС1 на антимониды Mg или Zn или солянокислого р-ра SbCl3 на NaBH4; медленно разлагается при комнатной т-ре, быстро при 150 °С; легко окисляется, горит на воздухе; мало раств. в воде; используют для получения сурьмы высокой чистоты; высокотоксичен.

Сульфат Sb2(SО4)3-бесцв. кристаллы с шелковистым блеском; плотн. 3,62 г/см3; очень гигроскопичен, расплывается на воздухе, водой гидролизуется до сульфата анти-монила (SbO)2SO4 и др. основных сульфатов; при 500 °С полностью разлагается; компонент пиротехн. составов. Ниобат SbМbО4-бесцв. кристаллы с ромбич. решеткой (а = 0,5561 нм, b = 0,4939 нм, с=1,1810 нм, z = 4, пространств. группа Pna21); плотн. 5,68 г/см3; получают спеканием оксидов Sb и Nb или гидротермальным путем; сег-нетоэлектрик, т-ра Кюри 410 °C.

Гидроксооксалат Sb(С2О4)ОН-бесцв. кристаллы; выше 275 °С разлагается с получением мелкодисперсной Sb2О3; не раств. в воде и орг. р-рителях; получают действием щавелевой к-ты на р-р SbС13; протрава при крашении.

Лактат Sb(СН3СНОНСОО)3-бесцв. кристаллы, не раств. в воде; получают. взаимод. Sb(ОН)3 с молочной к-той; фиксатор в ситцепечатании, протрава при гравировании.

Антимонилтартрат калия К(SbО)(С4Н4О6)-0,5Н2О ("рвотный камень")-бесцв. кристаллы; плотн. 2,7 г/см3; хорошо раств. в воде; получают кипячением Sb2О3 с р-ром гидротартрата К; протрава при крашении.

При спекании Sb2О3 с оксидами или карбонатами металлов без доступа воздуха образуются антимонаты(III) (или антимониты). Антимонаты щелочных металлов, в особенности К, раств. в воде, их р-ры-сильные восстановители. Все остальные антимонаты в воде не растворяются. При нагр. на воздухе окисляются до антимонатов(V). Известны метаантимонаты(III), напр. КSbО2, ортоантимонаты(III), как Na3SbO3, и полиантимонаты, напр. NaSb5O8, Na2Sb4O7. Для РЗЭ характерно образование ортоантимонатов LnSbO3, а также Ln3Sb5O12. Антимонаты Ni, Мn и др.-катализа-торы в орг. синтезе (р-ции окисления и поликонденсации), антимонаты РЗЭ-люминофоры.

Гексагидроксоантимонаты(V)—соли гексагидроксо-сурьмяной к-ты НSb(ОН)6. Из них соли щелочных металлов мало раств. в воде, все остальные-не растворяются. Получены для щелочных, мн. двухвалентных, редкоземельных металлов. При нагр. они обезвоживаются с образованием метаантимонатов(V), напр. М1SbО3. Гексагидроксоанти-монат калия КSb(ОН)6-кристаллич. или аморфное в-во; раств. в воде (2,7% по массе при 20 °С), не раств. в этаноле и ацетоне; получают взаимод. Sb2S3 с КОН и СиО в присут. воды; применяют для получения антимонатов(V), как реагент для обнаружейия ионов Na+. Гексагидроксоанти-монат натрия NaSb(OH)6 в воде почти не раств. (0,1% по массе при 20 °С); получают при выщелачивании щелочных сплавов рафинирования свинца с послед. очисткой; используют как компонент шихты для эмалей, окислитель в орг. синтезе.

При действии р-ра КSb(ОН)6 на р-ры солей Al, Cr, Zr, Th, Sn и др. металлов, а также при совместном гидролизе SbСl5 с хлоридами Ti, Nb и др. образуются рентгеноаморфные полимерные антимонаты переменного состава. Их используют как химически- и радиационно-стойкие селективные катионообменники. К этим соед. близки гетерополикисло-ты-сурьмяно-фосфорная, сурьмяно-кремниевая и др. Это тоже полимерные в-ва переменного состава, используемые как ионообменники.

Безводные антимонаты(V) получают обычно спеканием оксидов или карбонатов металлов с оксидами сурьмы на воздухе. Для одновалентных металлов характерно образование мета-МSbО3 и ортоантимонатов М3SbО4, для двухвалентных-мета- и пироантимонатов М2Sb2О7, для трехвалентных-ортоантимонатов, напр. InSbO4.

Пироантимонат свинца Рb2Sb2О7-оранжево-желтые кристаллы; разлагается выше 600 °С; не раств. в воде, неорг. к-тах и р-рах щелочей, раств. в царской водке; получают сплавлением Pb(NO3)2 с антимонилтартратом К и NaCl; используют как пигмент (неаполитанский желтый) для керамики.

Известны антимонаты, в к-рых одновременно присутствует как Sb(III), так и Sb(V). Их примером Служит серия соед. Na2Sb2O5, NaSb3O7 и NaSb5O9 со структурой типа пиро-хлора. См. также Сурьмаорганические соединения.

Получение. Сурьмяные руды обогащают с использованием гравитационных и флотационных методов. Для получения сурьмы чаще используют пирометаллургич. процессы - осадить плавку с железом или (для частично окисленных руд или руд, содержащих драгоценные металлы) окислить обжиг с возгонкой Sb2О3, к-рый далее подвергают восстановить плавке. В обоих случаях в качестве флюсов применяют Na2CO3, Na2SO4 или NaCl. Известны также реакц. плавка, основанная на р-ции Sb2S3 + 2Sb2O3 : 6Sb + 3SO2, содовая плавка 2Sb2S3 + 6Na2CO3 + 3С : 4Sb + 6Na2S + 6CO2, a также щелочная плавка. Гидрометаллургич. способ—выщелачивание р-ром Na2S с NaOH с послед. электролизом. Этот процесс применяют, в частности, к медно-сурьмяным тетра-эдритовым концентратам.

Рафинирование сурьмы огневым способом включает удаление Fe и Сu действием Sb2S3 или S, щелочное рафинирование-от As и S, очистку от Na действием SiO2 и разлив под слой расплава буры или NaSbO2 ("звездчатый шлак"). Для удаления Аu, Ag и Рb проводится электролитич. рафинирование с использованием сульфатно-фторидных калиево-щелочных р-ров. Сурьму высокой чистоты получают через про-межут. соед.-SbСl3 или SbН3, очищаемые, напр., ректификацией. Применяют также электролитич. рафинирование с использованием глицериново-щелочного или ксилитово-щелочного электролита. Окончат. очистку сурьму осуществляют кристаллизац. методами, в частности зонной плавкой.

Определение. Для качеств. определения сурьмы используют эмиссионный спектральный анализ (характеристич. линии: 252,852; 259,806; 287,792; 323,252 нм), а также р-ции с Na2S2O3 (образуется красно-оранжевый осадок Sb2OS2), с родамином С или с метиловым фиолетовым (фиолетовое окрашивание).

Для количественного определения преимущественно используют титриметрические методы-броматометричес-кий, перманганатометрический и др., основанные на окислении Sb(III) до Sb(V), а также фотометрические с образованием желтого комплекса [SbI4]- или с образованием соед. комплекса [SbCl6]- с основными красителями (бриллиантовый зеленый, кристаллический фиолетовый, родамин С, метиленовый голубой и др.) и их экстракцией из р-ров.

Из гравиметрических методов применяют осаждение в виде Sb2S3 из солянокислого р-ра, осаждение пирогаллолом и др. Используют также люминесцентный, поля-рографич., амперометрич., атомно-абсорбционный и др. методы.

Применение. Сурьма-компонент сплавов на основе Рb и Sn (для аккумуляторных пластин, типографских шрифтов, подшипников и др.), на основе Си и Zn, Sn (для художеств. литья). Чистую сурьму используют для получения антимонидов с полупроводниковыми св-вами. Из сурьмы получают оксид, сульфид и др. ее соединения.

Пыль и пары сурьмы вызывают носовые кровотечения, сурьмяную "литейную лихорадку", пневмосклероз, поражают кожу, нарушают половую функцию. Для пыли ПДК в воздухе рабочей зоны 0,5 мг/м3, в атм. воздухе 0,01 мг/м3, в почве 4,5 мг/кг, в воде 0,05 мг/л.

Мировое производство сурьмы (без СНГ) в концентратах 70000 т. Осн. страны-производители-Боливия, ЮАР, КНР, Мексика.

Сурьма известна с глубокой древности, в странах Востока ее применяли примерно за 3000 лет до н.э. Описание св-в и способов получения сурьмы, а также ее соед. впервые дано Василием Валентином в 1604.

Лит.: Сурьма, под ред. С. М. Мельникова, М., 1977; Немодрук А. А., Аналитическая химия сурьмы, М., 1978; Большаков К. А., Федоров П. И., Химия и технология малых металлов, М., 1984; Ищанходжаев С., Химия сурьмы и свинца, Таш., 1984; Полывянный И. Р., Лата В. А., Металлургия сурьмы, А.-А., 1991. П. И. Федоров.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн