Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ПОЛИЯДЕРНЫЕ СОЕДИНЕНИЯ

ПОЛИЯДЕРНЫЕ СОЕДИНЕНИЯ (многоядерные соед.), координац. соед., в молекулах которых имеется неск. атомов металлов, окруженных лигандами и связанных друг с другом посредством мостиковых групп. Наиб. изучены би-и триядерные координац. соединения. Когда число атомов металлов велико, такие соед. наз. координационными или металлсодержащими полимерами, металлополимерами (см. Координационные полимеры). Соотношение между полиядерными соединениями и координац. полимерами такое же, как и между мономерамиолигомерами) и полимерами в карбоцепных высокомол. соединениях. К полиядерным соединениям иногда относят соед., содержащие ячейки из непосредственно связанных друг с другом атомов металлов, обычно наз. кластерами. Различают гомо- и ге-терометаллические полиядерные соединения. Расстояния металл-металл в полиядерных соединениях варьируют в широких пределах, иногда могут достигать 1 нм и более.

Число известных полиядерных соединений огромно. Прир. и пром. р-ры ионов металлов, как правило, содержат полиядерные соединения. Многие координац. соед. в паровой фазе также имеют строение полиядерных соединений, напр. Fе2С16 (ф-ла I).

4010-12.jpg

Биядерные координац. соед. по структуре удобно классифицировать по числу мостиковых групп, связывающих моноядерные фрагменты. При одной мостиковой группе связь М— . —М м. б. линейной (плоской), напр. LM—F—ML, соед. II, III, или изогнутой-соед. IV (X = С1, Вг, Д V.

4010-13.jpg

4010-14.jpg

4010-15.jpg4010-16.jpg

При двух мостиковых группах часто реализуется устойчивый плоский квадрат-соед. VI.

4010-17.jpg

Макс. число мостиковых групп между двумя атомами металлов 4.

Триядерные координац. соед. могут иметь линейное или циклич., напр соед. VII, строение.

4010-18.jpg

В тетраядерных координац. соед. атомы металлов могут выстраиваться в цепь, напр. соед. VIII, образовать цикл (соед. IX) или тетраэдр (соед. X).

4010-19.jpg

4010-20.jpg J4010-21.jpg

С увеличением числа атомов металлов в полиядерных соединениях число возможных типов структур и их сочетаний увеличивается. Олигомеры с числом атомов металлов п = 5-15 часто имеют глобулярное строение, типичный пример-анионы гетерополикислот.

В р-рах полиядерные соединения образуются при наличии полидентатных лигандов и избытка ионов металлов. Поскольку образующиеся из молекулы воды лиганды полидентатны (ОН-бидентатный и О-тридентатный), то в водных р-рах солей металлов всегда имеет место в той или иной степени полиядерное комплексообразование, усиливающееся также благодаря образованию мостиковых водородных связей. Для идентификации и изучения полиядерных соединений в р-рах используют спектрофотометрию, разл. варианты радиоспектроскопии, в т.ч. ядерную магн. релаксацию.

Гидролиз - один из осн. путей образования полиядерных соединений. Характерный пример-укрупнение комплексов Bi:

4010-22.jpg

Практически все многозарядные катионы образуют в водных р-рах полиядерные соединения в соответствующей области рН. Так, в р-рах Sn(II) всегда присутствует катион [Sn2(OH)2]2+, а также [Sn3(OH)4]2+, в к-ром атомы Sn образуют треугольник Sn3 с расстоянием Sn—Sn ~ 0,36 нм. Аналогично существование полиядерных соединений в р-рах Pt(II) доказано выделением соли [Pt4(OH)4](ClO4)4·2H2O, катион Pt4(OH)4 имеет форму куба. Однако многие би-, три- и тетраядерные комплексы получены только в определенных эмпирически найденных условиях, при определенных соотношениях реагентов, р-ри-телей и т.п.

Чаще всего полиядерные соединения получают путем связывания части лигандов в моноядерных комплексных соед., напр.:

4010-23.jpg

Др. путь-р-ции функц. групп в лиганде, напр.:

4010-24.jpg

Реакц. способность полиядерных соединений в большинстве простейших р-ций, характерных для координац. соед., таких, как окислит.-вос-становит. р-ции, замещение лигандов, обмен лигандами во внеш. сфере и т.п., мало чем отличается от реакц. способности моноядерных комплексов с теми же лигандами.

Типичная для полиядерных соединений р-ция-расщепление мостиковых связей с образованием, как правило, моноядерных координац. соединений:

4010-25.jpg

Одно из наиб. характерных св-в полиядерных соединений-внутримол. электронный обмен, исследуемый такими методами, как ЯМР, метод остановленной струи, электрохимические и т.д. Найдено, что по мере уменьшения расстояния между ионами и увеличения электронной проводимости лигандов скорость обмена возрастает на неск. порядков.

Особый интерес представляют магн. св-ва полиядерных соединений. Ряд магнитных полиядерных соединений образует диэлектрич. кристаллы, содержащие в качестве структурных элементов решетки ионы переходных металлов, участвующие в обменных взаимодействиях друг с другом; они эффективно экранированы лигандами от др. парамагн. центров. Такие системы иногда наз. "обменными кластерами". Они оказались удобными модельными системами для исследования обменных взаимодействий и создания микроскопич. теории магнетизма.

Отдельные типы полиядерных соединений находят практич. применение в качестве эффективных катализаторов, разл. материалов (магн., диэлектрич., полупроводниковых).

Лит.: Хайдук И., "Успехи химии", 1961, т. 30, в. 9, с. 1124-74; Харгит-таиМ., ХаргиттаиИ., Геометрия молекул координационных соединений в парообразной фазе, пер. с англ., М., 1976; Цукерблат Б. С., Белинский М. И., Магнетохимия и радиоспектроскопия обменных кластеров, Киш., 1983; Burgess J., Metal ions in solution, Chichester-N. Y., 1978. С.П. Губин.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн