Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


Тройная связь

Тройная связь, химическая ковалентная связь, осуществляемая тремя парами электронов, находящихся в поле двух атомных ядер. Тройная связь включает одну s- и две p-связи (см. Сигма- и пи-связи); результирующее распределение электронной плотности между двумя связанными ядрами имеет осевую симметрию (как в случае простой связи). В структурных формулах химических соединений тройная связь между атомами обозначается тремя валентными штрихами, например N º N, С º С, C º N. Если одна или обе p-компоненты тройной связи (например, между атомами А и В) образуются в результате донорно-акцепторного взаимодействия (см. Донорно-акцепторная связь), такие тройные связи

обычно называют квазитройными (в «нормальной» тройной связи А º В s и две p-компоненты образованы в результате взаимодействия неспаренных электронов). Примеры квазитройных связей: связь концевого атома кислорода с атомом переходного металла (, так называемая «иловая» связь), например в K2[ReOCI5], связь в молекуле

  Вследствие большой энергии тройной связи и квазитройных связей соответствующие молекулы (например, N2, CO) или молекулярные фрагменты (например, N º Me, ) термодинамически устойчивы и обычно химически инертны. Так, фиксация молекулярного азота (то есть активация его для химических превращений) невозможна без предварительной координации его как лиганда в определённых комплексах переходных металлов, в результате которой кратность (прочность) связи азотазот существенно уменьшается.

  Если раньше в основном изучались тройные связи между лёгкими атомами (С, N), то теперь всё большее внимание уделяется тройным связям с участием тяжёлых атомов, прежде всего атомов переходных металлов; эти тройные связи реализуются в новых типах комплексных соединений. Уже изучено большое число комплексных соединений переходных металлов с нитридо (N º )–, оксо , имино  и карбиновыми (RC º ) группами как лигандами, характеризующимися высокой прочностью химических связей. Важной особенностью указанных лигандов является их сильное трансвлияние (то есть сильное ослабление связи металллиганд в транспозиции), что предопределяет многие свойства и реакционную способность таких соединений. Кроме того, известны димерные кластеры переходных металлов с тройными связями металлметалл, например Mo2[N (CH3)2]6. Эта молекула имеет центросимметричную повёрнутую (как в этане C2H6) конфигурацию, что обусловлено осевой симметрией распределения электронной плотности в связи Me º Me, где Me — металл. См. также Валентность, Химическая связь.

 

  Лит.: Шусторович Е. М., Химическая связь, М., 1973.

  Е. М. Шусторович.

 



     © ХиМиК.ру




Реклама   Обратная связь   Дизайн