Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


Следующая Содержание Предыдущая

Свертывание белков

Информация относительно биологически активной (нативной) конформации полипептидной цепи закодирована в аминокислотной последовательности. Вторичные, третичные и четвертичные структуры многих белков образуются в растворе самопроизвольно в пределах нескольких минут. Тем не менее в клетке имеются специальные белки (шапероны, см. с. 230), функция которых обеспечивать свертывание полипептидных цепей вновь синтезируемых белков. Выяснение закономерностей свертывания полипептидных цепей является одной из важнейших задач биохимии. В случае успеха появилась бы возможность предсказывать нативные конформации белков на основании данных об аминокислотных последовательностях, реконструируемых на основании относительно легко доступных ДНК-последовательностей (см. c. 256).

Свертывание белков на примере миоглобина, флаводоксина и иммуноглобулина G;

А. Свертывание белков

Свертывание полипептидной цепи в нативную конформацию идет наиболее успешно в физиологических условиях. Потеря нативной конформации, денатурация, наступает при экстремальных значениях рН, высокой температуре или под действием органических растворителей, детергентов и других денатурирующих веществ.

К факторам, стабилизирующим конформацию белка, относятся водородные связи, дисульфидные мостики, электростатическое взаимодействие и комплексообразование с ионами металлов (см. с. 73). Другим очень важным стабилизирующим фактором является «гидрофобный эффект». Как отмечалось на с. 34, в смеси неполярных вещесте с ведой происходит разделение фаз («эффект масляных капель»), т. е. идет самопроизвольный процесс, при котором поверхность контакта между фазами стремится быть минимальной. По аналогии с этим процессом полипептидная цепь свертывается в водной среде таким образом, чтобы как можно больше неполярных боковых групп аминокислотных остатков были бы спрятаны внутри глобулы, тогда как полярные группы контактируют с водой (1). Такой механизм позволяет объяснить распределение соответствующих группировок и в молекуле инсулина (см. с. 83).

В настоящее время не существует полного описания энергетики процесса свертывания полипептидной цепи (2). В этом разделе обсуждается лишь предельно простая модель. В заданных условиях конформация полипептидной цепи будет устойчивой лишь в том случае, если она обладает минимумом свободной энергии (изменение свободной энергии свертывания ΔGСВ имеет знак минус) (см. с. 22). Вместе с тем свертывание полипептидной цепи повышает степень упорядоченности белковой молекулы. А как указывалось на с. 26, рост упорядоченности означает уменьшение энтропии системы (ΔSКОНФ — величина отрицательная), а следовательно возрастание энтропийного члена в уравнении Гиббса-Гельмгольца (-Т · ΔSКОНФ имеет знак плюс) (фиолетовая стрелка). На процесс свертывания также оказывают стабилизирующее воздействие ковалентные и другие типы связей, образующиеся в белковой глобуле. Поэтому изменение энтальпии свертывания ΔHСВ — величина отрицательная (красная стрелка). Другим фактором, влияющим на ход процесса, является изменение энтропии окружающей среды (воды) за счет гидрофобного эффекта. При свертывании полипептидной цепи снижается степень упорядоченности воды и образуется максимально возможное число водородных связей. При этом возрастает энтропия водной среды, т. е. ΔSВОД —величина положительная, а следовательно, энтропийный член уравнения -T · ΔSВОД имеет знак минус (синяя стрелка). Таким образом, уменьшение энтропии полипептидной цепи перекрывается ростом энтропии окружающей среды и энтропия системы в целом возрастает. Следовательно, полипептидная цепь самопроизвольно принимает нативную конформацию, характеризующуюся минимумом свободной энергии суммарной системы (ΔGСВ — величина отрицательная) (зеленая стрелка).

Б. Свертывание белков: примеры

При сравнении наиболее крупных глобулярных белков становится очевидным, что существует определенная схема свертывания полипептидной цепи, которая воспроизводится с незначительными вариациями. Рассмотрим ряд примеров (α-спирали выделены красным цветом, плоскости складчатого листа — зеленым), глобулярные белки, построенные из α-спиралей, как например, миоглобин (см. с. 330, гем выделен желтым цветом), встречаются редко. Обычно наблюдаются сочетания складчатых листов и спирализованных участков, как, например, во флаводоксине, небольшом флавопротеине (FMN выделен желтым цветом), где 5 расположенных веером складчатых листов из пяти параллельных тяжей формируют ядро молекулы; 4 α-спиральных участка окружают ядро снаружи. Иммуноглобулин (см. с. 288) построен из нескольких похожих доменов (независимых, компактно свернутых фрагментов полипептидной цепи), в которых два антипараллельных складчатых листа из трех или четырех тяжей образуют бочкообразную структуру (см. с. 292), Приведенный на схеме СН2-домен несет олисахарид (желтый), который в более наглядной форме приведен на с. 51.

Следующая Содержание Предыдущая


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн