Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


Глава 14. БИОСИНТЕЗ БЕЛКА

Одной из глобальных задач современной биологии и ее новейших разделов: молекулярной биологии, биоорганической химии, физико-химической биологии – является выяснение молекулярных основ и тонких механизмов синтеза белка, содержащего сотни, а иногда и тысячи остатков L-амино-кислот. Последние располагаются, как это установлено, не хаотично, а в строго заданной последовательности, обеспечивая тем самым уникальность структуры синтезированной белковой молекулы, наделенной уникальной функцией. Другими словами, механизм синтеза должен обладать весьма тонкой и точной кодирующей системой, которая автоматически программирует включение каждого аминокислотного остатка в определенное место полипептидной цепи. Установлено, что кодирующая система однозначно определяет первичную структуру, в то время как вторичная и третичная структуры белковой молекулы определяются физико-химическими свойствами и химической структурой радикалов аминокислот в полипептиде.

Первоначально представляли, что синтез белка могут катализировать те же протеолитические ферменты, которые вызывают и его гидролиз, но путем обратимости химической реакции. Однако оказалось, что синтетические и катаболические реакции протекают не только различными путями, но даже в разных субклеточных фракциях. Не подтвердилась также гипотеза о предварительном синтезе коротких пептидов с последующим их объединением в одну полипептидную цепь. Более правильным оказалось предположение, что для синтеза белка требуются источники энергии, наличие активированных свободных аминокислот и нескольких типов клеточных нуклеиновых кислот.

В выяснение молекулярных механизмов синтеза белка определенный вклад внесли российские биохимики. Так, в лаборатории А.Е. Браунштейна было впервые указано на участие АТФ в синтезе квазипептидных связей (на примерах гиппуровой кислоты, глутамина, глутатиона и ацетанилида). В.Н. Орехович еще в 50-е годы установил, что перенос аминоацильных или пептидильных группировок на NH2-группу аминокислот может осуществляться не только с амидной или пептидной, но и со сложноэфирной связи. Как будет показано далее, именно этот механизм лежит в основе реакции транспептидирования в 50S рибосоме в стадии элонгации синтеза белка.

Принципиальная схема биосинтеза белка (по А.С. Спирину)

Рис. 14.1. Принципиальная схема биосинтеза белка (по А.С. Спирину).

Красные кружочки - свободные аминокислоты и их остатки в составе полипептидной цепи.

Значительно позже были получены доказательства, что в синтезе белка, протекающем в основном в цитоплазме, решающую роль играют нуклеиновые кислоты, в частности ДНК. После того как было установлено, что ДНК является носителем и хранителем наследственной информации, был поставлен вопрос о том, каким образом эта генетическая информация, записанная (зашифрованная) в химической структуре ДНК, трансформируется в фенотипические признаки и функциональные свойства живых организмов, передающиеся по наследству. В настоящее время можно дать однозначный ответ на этот вопрос: генетическая информация программирует синтез специфических белков, определяющих в свою очередь специфичность структуры и функции клеток, органов и целостного организма (рис. 14.1). В природе, как известно, существует два типа биополимерных макромолекул: так называемые неинформативные биополимеры (они представлены повторяющимися мономерными единицами и/или разветвленными структурами, например полисахариды, поли-АДФ-рибоза, пеп-тидогликаны, гликопротеины) и информативные биополимеры, несущие первичную генетическую информацию (нуклеиновые кислоты) и вторичную генетическую, точнее фенотипическую, информацию (белки). Эти общие представления могут быть выражены следующей последовательностью событий (поток информации):

ДНК –> РНК –> Белок –> Клетка –> Организм

Значительный вклад в современные представления о месте, факторах и механизме синтеза белка внесли исследования Т. Касперсона, М. Хоглан-да, П. Берга, П. Замечника, С. Очоа, М. Ниренберга, Н. Горовица, Ф. Гауровица, С. Вейсса и российских биохимиков А.А. Баева, А.Н. Белозерского, А.С. Спирина и др.

Не останавливаясь на всех исторических аспектах развития этой важнейшей проблемы, следует напомнить, что еще в 40-х годах было установлено, что ДНК локализована в ядре клетки, в то время как синтез белка протекает главным образом в микросомах цитоплазмы. Первые экспериментальные доказательства необходимости нуклеиновых кислот для синтеза белка были получены в лаборатории Т. Касперсона. Было показано также, что присутствующие в цитоплазме рибонуклеиновые кислоты контролируют синтез цитоплазматических белков. Таким образом, уже тогда вырисовывалась картина тесной связи между ДНК, локализованной в ядре , и синтезом белка, протекающим в цитоплазме и регулирующимся рибонуклеиновыми кислотами, которые были открыты как в цитоплазме, так и в ядре. На основании этих чисто морфологических данных было сделано заключение, полностью подтвержденное в настоящее время, что биосинтез белка, хотя непосредственно и регулируется рибонуклеиновыми кислотами, опосредованно связан с контролирующим влиянием ДНК ядра и что РНК сначала синтезируется в ядре, затем поступает в цитоплазму, где выполняет роль матрицы в синтезе белка. Полученные значительно позже экспериментальные данные подтвердили гипотезу о том, что основными функциями нуклеиновых кислот являются хранение генетической информации и реализация этой информации путем программированного синтеза специфических белков.

В последовательности ДНК —> РНК —> Белок недоставало сведений о том, каким образом происходят расшифровка наследственной информации и синтез специфических белков, определяющих широкое разнообразие признаков живых существ. В настоящее время выяснены основные процессы, посредством которых осуществляется передача наследственной информации: репликация, т.е. синтез ДНК на матрице ДНК; транскрипция, т.е. синтез РНК на матрице ДНК или перевод языка и типа строения ДНК на молекулу РНК (см. ранее), и трансляция – процесс, в котором генетическая информация, содержащаяся в молекуле мРНК, направляет синтез соответствующей аминокислотной последовательности в белке. Напомним, однако, что многие тонкие механизмы транскрипции и трансляции окончательно еще неясны.

Предыдущая страница | Следующая страница

СОДЕРЖАНИЕ


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн