Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий
Вакансии для химиков

Торий (хим. элемент)

Торий (лат. Thorium), Th, радиоактивный химический элемент, первый член семейства актиноидов, входящих в III группу периодической системы Менделеева; атомный номер 90, атомная масса 232,038; серебристо-белый пластичный металл. Природный торий практически состоит из одного долгоживущего изотопа 232Th — родоначальника одного из радиоактивных рядов — с периодом полураспада T1/2 = 1,39×1010 лет (содержание изотопа 228Th, находящегося с ним в равновесии, ничтожно — 1,37×10—8%) и четырёх короткоживущих изотопов, два из которых относятся к радиоактивному ряду уранарадия: 234Th (T1/2 = 24,1 сут) и 230Th (T1/2 = 8,0×104 лет), остальные — к ряду актиния: 231Th (T1/2 = 25,6 ч) и 227Th (T1/2 = 18,17 сут). Из искусственно полученных изотопов наиболее устойчив 229Th (T1/2 = 7340 лет).

  Торий открыт в 1828 И. Я. Берцелиусом в одном из сиенитов в Норвегии. Элемент назван по имени бога грома в скандинавской мифологии — Тора, а минералсиликат тория — торитом.

  Распространение в природе. Торий— характерный элемент верхней части земной коры — гранитного слоя и осадочной оболочки, где его в среднем содержится соответственно 1,8 ·10—3% и 1,3·10—3% по массе. Торий сравнительно слабомигрирующий элемент; в основном он участвует в магматических процессах, накапливаясь в гранитах, щелочных породах и пегматитах. Способность к концентрации слабая. Известно 12 собственных минералов тория (см. Ториевые руды). Торий содержится в монаците, уранините, цирконе, апатите, ортите и др. (см. Радиоактивные минералы). Основной промышленный источник тория — монацитовые россыпи (морские и континентальные). В природных водах содержится особенно мало тория: в пресной воде 2×10—9%, в морской воде 1×10—9%. Он очень слабо мигрирует в биосфере и гидротермальных растворах.

  Физические и химические свойства. Торий существует в виде двух модификаций: a-формы с гранецентрированной кубической решёткой при температуре до 1400 °С (а = 5,086 Å) и b-формы с объёмноцентрированной кубической решёткой при температуре выше 1400 °С (a = 4,11 Å). Плотность тория (рентгено-графическая) 11,72 г/см3 (25 °С); атомный диаметр в a-форме 3,59 Å, в b-форме 3,56 Å; ионные радиусы Th3+ 1,08 Å, Th4+ 0,99 Å; tпл 1750 °С; tkип 3500— 4200 °C.

  Мольная теплоёмкость тория 27,32 кдж/(кмоль×К) [6,53 кал/(г-атом×°С)] при 25 °С; теплопроводность при 20 °С 40,19 вт/м×К) [0,096 кал/(см×сек×°С)]; температурный коэффициент линейного расширения 12,5×10—6 (25—100 °С); удельное электросопротивление 13×10—6—18×10—6 ом×см (25 °С); температурный коэффициент электросопротивления 3,6×10—3—4×10—3. Торий парамагнитен; удельная магнитная восприимчивость 0,54×10—6 (20 °С). При 1,4К переходит в состояние сверхпроводимости.

  Торий легко деформируется на холоду; механические свойства тория сильно зависят от его чистоты, поэтому предел прочности при растяжении тория варьирует от 150 до 290 Мн/м 2 (15—29 кгс/мм 2), твёрдость по Бринеллю от 450 до 700 Мн/м 2 (45—70 кгс/мм 2). Конфигурация внешних электронов атома Th 6d 27s 2.

  Хотя торий относится к семейству актиноидов, однако по некоторым свойствам он близок также к элементам второй подгруппы IV группы периодической системы Менделеева — Ti, Zr, Hf. В большинстве соединений торий имеет степень окисления +4.

  На воздухе при комнатной температуре торий окисляется незначительно, покрываясь защитной плёнкой чёрного цвета; выше 400 °С быстро окисляется с образованием ThO2 — единственного окисла, который плавится при 3200 °С и обладает высокой химической устойчивостью. Получают ThO2 термическим разложением нитрата, оксалата или гидроокиси тория. С водородом при температурах выше 200 °С торий реагирует с образованием порошкообразных гидридов ThH2, ThH3 и др. состава. В вакууме при температуре 700—800 °С из тория можно удалить весь водород. При нагревании в азоте выше 800 °С образуются нитриды ThN и Th2N3, которые разлагаются водой с выделением аммиака. С углеродом образует два карбида — ThC и ThC2; они разлагаются водой с выделением метана и ацетилена. Сульфиды ThS, Th2S3, Th7S12, ThS2 могут быть получены при нагревании металла с парами серы (600—800 °С). Торий реагирует с фтором при комнатной температуре, с остальными галогенами — при нагревании, с образованием галогенидов типа ThX4 (где Х — галоген). Наиболее важное промышленное значение из галогенидов имеют фторид ThF4 и хлорид ThCl4. Фторид получают действием HF на ThO2 при повышенных температурах; хлоридхлорированием смеси ThO2 с углём при повышенных температурах. Фторид мало растворим в воде и минеральных кислотах; хлорид, бромид и йодид — гигроскопичны и хорошо растворимы в воде. Для всех галогенидов известны кристаллогидраты, выделяемые кристаллизацией из водных растворов.

  Компактный торий при температурах до 100 °С медленно корродирует в воде, покрываясь защитной окисной плёнкой. Выше 200 °С активно реагирует с водой с образованием ThO2 и выделением водорода. Металл на холоду медленно реагирует с азотной, серной и плавиковой кислотами, легко растворяется в соляной кислоте и царской водке. Соли тория образуются в виде кристаллогидратов. Растворимость солей в воде различна: хорошо растворимы нитраты Th (NO3)4×nH2O; труднорастворимы сульфаты Th (SO4)2×nH2O, основной карбонат ThOCO3×8H2O, фосфаты Th3(PO4)4×4H2O и ThP2O7×2H2O; практически нерастворим в воде оксалат Th (C2O4)2×6H2O. Растворы щелочей слабо действуют на торий. Гидроокись Th (OH)4 осаждается из солей тория в интервале pH = 3,5—3,6 в виде аморфного осадка. Для ионов Th4+ в водных растворах характерна ярко выраженная способность к образованию комплексных соединений и двойных солей.

  Получение. Торий извлекается главным образом из монацитовых концентратов, в которых он содержится в виде фосфата. Промышленное значение имеют два способа вскрытия (разложения) таких концентратов:

  1) обработка концентрированной серной кислотой при 200 °С (сульфатизация);

  2) обработка растворами щёлочи при 140 °С. В сернокислые растворы продуктов сульфатизации переходят все редкоземельные элементы, торий и фосфорная кислота. При доведении pH такого раствора до 1 осаждается фосфат тория; осадок отделяют и растворяют в азотной кислоте, а затем нитрат тория экстрагируют органическим растворителем, из которого торий легко вымывается в виде комплексных соединений. При щелочном вскрытии концентратов в осадке остаются гидроокиси всех металлов, а в раствор переходит тринатрий фосфат. Осадок отделяют и растворяют в соляной кислоте; понижая pH этого раствора до 3,6—5, осаждают торий в виде гидроокиси. Из выделенных и очищенных соединений тория получают ThO2, ThCl4 и ThF4 — основные исходные вещества для производства металлического тория металлотермическими методами или электролизом расплавленных солей. К металлотермическим методам относятся: восстановление ThO2 кальцием в присутствии CaCl2 в атмосфере аргона при 1100—1200 °С, восстановление ThCl4 магнием при 825—925 °С и восстановление ThF4 кальцием в присутствии ZnCl2 с получением сплава тория и последующим отделением цинка нагреванием сплава в вакуумной печи при 1100 °С. Во всех случаях получают торий в форме порошка или губки. Электролиз расплавленных солей ведётся из электролитов, содержащих ThCl4 и NaCI, или ванн, состоящих из смеси ThF4, NaCI, KCl. Торий выделяется на катоде в виде порошка, отделяемого затем от электролита обработкой водой или разбавленными щелочами. Для получения компактного тория применяют метод порошковой металлургии (спекание заготовок ведут в вакууме при 1100—1350 °С) или плавку в индукционных вакуумных печах в тиглях из ZrO2 или BeO. Для получения тория особо высокой чистоты используют метод термической диссоциации иодида тория.

  Применение. Торированные катоды применяются в электронных лампах, а оксидно-ториевые — в магнетронах и мощных генераторных лампах. Добавка 0,8—1% ThO2 к вольфраму стабилизирует структуру нитей ламп накаливания. ThO2 используют как огнеупорный материал, а также как элемент сопротивления в высокотемпературных печах. Торий и его соединения широко применяют в составе катализаторов в органическом синтезе, для легирования магниевых и др. сплавов, которые приобрели большое значение в реактивной авиации и ракетной технике. Металлический торий используется в ториевых реакторах.

  При работе с торием необходимо соблюдать правила радиационной безопасности.

  А. Н. Зеликман.

  Торий в организме. Торий постоянно присутствует в тканях растений и животных. Коэффициент накопления тория (то есть отношение его концентрации в организме к концентрации в окружающей среде) в морском планктоне — 1250, в донных водорослях — 10, в мягких тканях беспозвоночных — 50—300, рыб — 100. В пресноводных моллюсках (Unio mancus) его концентрация колеблется от 3×10—7 до 1×10—5%, в морских животных от 3×10—7 до 3×10—6%. Торий поглощается главным образом печенью и селезёнкой, а также костным мозгом, лимфатическими железами и надпочечниками; плохо всасывается из желудочно-кишечного тракта. У человека суточное поступление тория с продуктами питания и водой составляет 3 мкг; выводится из организма с мочой и калом (0,1 и 2,9 мкг соответственно). Торий — малотоксичен, однако как природный радиоактивный элемент вносит свой вклад в естественный фон облучения организмов (см. Фон радиоактивный).

  Г. Г. Поликарпов.

 

  Лит.: Торий, его сырьевые ресурсы, химия и технология, М., 1960; Зеликман А. Н., Металлургия редкоземельных металлов, тория и урана, М., 1961; Емельянов В. С., Евстюх и н А. И., Металлургия ядерного горючего, 2 изд., М., 1968; Сиборг Г. Т., Кац Дж., Химия актинидных элементов, пер. с англ., М., 1960; Bowen Н. J. М., Trace elements in biochemistry, L.—N. Y., 1966.



     © ХиМиК.ру




Реклама   Обратная связь   Дизайн