Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


РАДИКАЛЬНЫЕ ПАРЫ

РАДИКАЛЬНЫЕ ПАРЫ, совокупности двух своб. радикалов в структурной ячейке, образуемой молекулами жидкости или твердого тела (в стеклообразном или кристаллич. состоянии). Различают два осн. типа радикальных пар: геминальные, возникающие при распаде одной молекулы, фотопереносе электрона, фотопереносе протона, и диффузионные-результат случайных встреч двух радикалов (см. Клетки эффект). Время жизни радикальных пар в невязких жидкостях ~ 10-9 с. Расстояние между центрами rср-от 40 до 100 нм.

В твердой матрице (замороженные р-ры или кристаллы) геминальные радикальные пары могут стабилизироваться в триплетном состоянии с суммарным электронным спином Sэфф = 1. Анализ спектров ЭПР позволяет получить данные о параметрах D и Е (см. Электронный парамагнитный резонанс), являющихся осн. характеристиками радикальных пар в твердой фазе. Параметр D связан с расстоянием rср между радикальными центрами соотношением:4032-54.jpgгде 4032-55.jpgдля большинства орг. своб. радикалов, g-g-фактор своб. электрона, mБ - магнетон Бора. Это соотношение справедливо для сравнительно простых систем, в к-рых область делокализации неспаренных электронов по ядерному остову своб. радикала много меньше rср. Параметр Е определяет характер симметрии радикальных пар: при E = 0 радикальная пара имеет аксиальную симметрию, отклонение от к-рой обусловливает рост параметра Е. В спектрах ЭПР кроме разрешенных переходов, подчиняющихся правилу отбора Dms = 1 (ms-магн. спиновое квантовое число), в области g-фактора, равного 2, иногда наблюдаются формально запрещенные линии в области g-фактора, равного 4 (правило отбора Dms = 2), интенсивность к-рых быстро падает с увеличением rср.

Если линии ЭПР имеют сверхтонкую структуру, обусловленную взаимод. неспаренных электронов с магн. ядрами в радикалах, константы этого взаимод. в 2 раза меньше, чеМ константы аналогичного взаимод. для радикалов, не входящих в радикальные пары. Кроме того, каждый неспаренный электрон взаимод. с магн. ядрами обоих радикалов, составляющих радикальные пары, что указывает на сильный обмен неспаренными электронами в радикальных парах. Наиб. полную информацию получают из спектров ЭПР монокристаллов, исследование угловых зависимостей к-рых дает главные значения D и позволяет оценить взаимную ориентацию радикалов в радикальных парах, их расположение относительно внеш. магн. поля.

Радикальные пары образуются при фото диссоциации (фотораспаде) орг. соединений. Напр., фотораспад 2,2'-азо-бис-изобутиронит-рила приводит к образованию двух цианоизопропильных радикалов4032-56.jpgстабилизирующихся в радикальную пару при 77 К.

Радикальные пары возникают в фотохим. окислит.-восстановит, процессах с переносом электрона или протона, при образовании кластеров, ионных пар (ион-радикалов) в слабо сольвати-рующих р-рителях, напр. парамагнитные димеры кетилов:

4032-57.jpg

Концепция радикальных пар играет важную роль в изучении реакций в растворах и стимулирует теоретич. рассмотрение ряда магнитно-спиновых эффектов (хим. поляризация электронов и ядер, магн. изотопный эффект при рекомбинации радикалов и др.).

Лит.: Интерпретация сложных спектров ЭПР, М., 1975; Шварц М., Ионы и ионные пары в органических реакциях, пер. с англ., М., 1975; Бучаченко А.Л., Сагдеев Р.З., Салихов К.М., Магнитные и спиновые эффекты в химических реакциях, Новосиб., 1978. А. И. Прокофьев.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн