Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий



Следующая страницаСодержаниеПредыдущая страница

1.5. Поверхностное натяжение растворов и адсорбция

Свободная поверхностная энергия самопроизвольно может только уменьшаться, что проявляется в уменьшении либо поверхности раздела фаз, либо межфазного (поверхностного) натяжения. Поверхностное натяжение может уменьшаться в результате самопроизвольного перераспределения компонентов системы между объемами фаз a и b и поверхностью их раздела. В поверхности раздела фаз будут преимущественно концентрироваться те компоненты, которые способны уменьшать избыточную свободную поверхностную энергию. Это явление получило название «адсорбция». Количественно мерой адсорбции служит избыток вещества в поверхностном слое определенной толщины по сравнению с его количеством в таком же слое в объеме фазы. Этот избыток обычно относят к единице площади поверхности (или к единице массы адсорбента). Такая адсорбция называется гиббсовской и обозначается буквой Гi. Поверхностный избыток является алгебраической величиной. Если он положителен, то вблизи поверхности данный компонент присутствует в избытке, если отрицателен, то концентрация компонента на поверхности фазы ниже, чем в ее объеме .

Рассмотрим распределение в системе i -го компонента, предполагая, что это вещество способно понижать поверхностное натяжение. В соответствии с уравнением (1.1.6) число молей n вещества i-го компонента в системе определяется как .

Количество вещества в обеих фазах составляет

. (1.1.81)

где Сa, Сb- концентрация вещества в фазах a, b.

Количество вещества на поверхности раздела фаз , избыточное по отношению к объемам фаз Va и Vb, оказывается зависимым от положения разделяющей плоскости, так как концентрации вещества в различных фазах не равны, .

Учитывая уравнение (1.1.81) ,

. (1.1.82)

Разделив выражение (1.1.82) на площадь поверхности раздела фаз А, можем определить гиббсовскую адсорбцию:

. (1.1.83)

Фундаментальным уравнением физической химии поверхностей является взаимосвязь между адсорбцией и межфазным натяжением, которую можно определить экспериментально при одновременном изменении многих факторов. Остановимся на системах, в которых адсорбция протекает при постоянной температуре. Связь между адсорбцией и межфазным натяжением при постоянной температуре T называется изотермой адсорбции, фундаментальное уравнение которой известно как уравнение Гиббса. Рассмотрим его вывод.

При небольшом обратимом изменении энергии системы dU с учетом формулы (1.1.4) можем написать

, (1.1.84)

где U – полная внутренняя энергия системы; Ua, Ub, Usвнутренняя энергия фаз aиb и поверхности их раздела; Pa, Pb - давление в фазах aиb; m - химический потенциалi-того компонента; Sa, Sb, Ssэнтропия фаз a иb и их поверхности раздела; s - поверхностное натяжение.

Поскольку из курса химической термодинамики известно, что

(1.1.85)

и

, (1.1.86)

то

. (1.1.87)

Если энергию, энтропию и количество компонентов увеличивать от нуля до некоторого определенного значения при постоянстве температуры T, площади поверхности раздела фаз A и количестве вещества на этой поверхности , то уравнение (1.1.87) переходит в общее уравнение

, (1.1.88)

дифференцирование которого приводит к выражению

. (1.1.89)

Сравнивая его с уравнением (1.1.88), получаем

. (1.1.90)

В расчете на единицу поверхности

, (1.1.91)

где – гиббсовская адсорбция; – удельная энтропия поверхностного слоя.

При постоянной температуре

. (1.1.92)

Для двухкомпонентной системы

, (1.1.93)

где индекс 1 относится к растворителю, а индекс 2 – к растворенному веществу.

Рис. 1.15. Схема реальной (I) межфазовой области и идеальной (II) и (III) разделяющей межфазовой поверхности (поверхности Гиббса)

Разделяющая поверхность Гиббса может быть проведена так, чтобы обратилась в нуль адсорбция любого наперед заданного компонента, но только одного, как это показано на рис. 1.15.

Расстояние между двумя плоскостями (разделяющими поверхностями), одна из которых соответствует условию Гj = 0, а другая - Гk = 0, обозначим dkj:

, (1.1.94)

где Гk, Гj– избытки рассматриваемых компонентов в поверхностном слое ; Cka, Ckb, Cja, Cjbконцентрация компонентов k и j в фазах a и b; zk, zj – координаты разделяющей поверхности.

Поскольку значения Г1 в уравнении (1.1.93) определены относительно произвольно выбранного положения разделяющей плоскости, то ее можно расположить так, чтобы избыток растворителя в поверхностном слое был равен нулю ( Г1 = 0).

Тогда

, (1.1.95)

где верхний индекс 1 означает, что для выбранной поверхности раздела Г1=0.

Учитывая зависимость химического потенциала от активности растворенного вещества

, (1.1.96)

получаем после дифференцирования уравнения (1.1.96)

, (1.1.97)

где - активность растворенного вещества.

Поэтому, подставляя уравнение (1.1.97) в уравнение (1.1.95), получаем

. (1.1.98)

Из уравнения (1.1.98) следует, что если , то адсорбция положительна, а при возникает дефицит растворенного вещества на разделяющей поверхности .

Поскольку , где g – коэффициент активности, который для разбавленных растворов стремится к единице, то и

. (1.1.99)

Уравнение (1.1.99) представляет собой наиболее употребляемую форму изотермы адсорбции Гиббса, причем так как рассматривается адсорбция именно растворенного вещества, индексы при адсорбции и концентрации опускают, т.е.

. (1.1.100)

Исследования показывают, что существуют такие вещества, растворение которых приводит к резкому снижению поверхностного натяжения раствора. Эти вещества называют поверхностно-активными. В соответствии с уравнением Гиббса адсорбция их всегда положительна, т.е. концентрация в поверхностном слое выше объемной концентрации. По предложению Ребиндера мера поверхностной активности обозначается первой буквой фамилии Гиббса. Обычно используют значения поверхностной активности в бесконечно разбавленных растворах

. (1.1.101)

К классу поверхностно-активных веществ (ПАВ) относятся жирные кислоты и их соли (мыла), сульфокислоты, их соли, спирты, алкилсульфоэфиры и др. Если , то Г< 0 (адсорбция отрицательна). Поверхностное натяжение растворов этих веществ на границе с воздухом выше, чем на границе с чистым растворителем (водой). Такие вещества называют поверхностно-инактивными. К ним относятся минеральные соли, основания, кислоты и низшие органические кислоты.

Очевидно, что если , то Г= 0 (адсорбция не происходит). Такое вещество называют поверхностно-инертным. Вещество, поверхностно-активное на одной границе раздела фаз, может быть неактивным на другой и наоборот. Приведенное выше деление веществ с соответствующими параметрами справедливо для границы водный раствор - воздух. На других границах данные вещества могут вести себя иначе.

В 1978 г. Дюкло и Траубе сформулировали эмпирическое правило: в гомологическом ряду поверхностно-активных веществ поверхностная активность и адсорбция возрастают при переходе к каждому последующему члену гомологического ряда примерно в 3,2 раза. Однако это правило справедливо только для весьма разбавленных растворов и исключает три первых члена гомологического ряда. Математически это правило может быть записано

или , (1.1.102)

где n – число атомов углерода в углеводородной цепочке;

. (1.1.103)

Зависимость поверхностной активности от числа метиленовых групп в углеводородной цепочке ПАВ выражается уравнением

или , (1.1.104)

где ; , D1W- изменение энтропии и работа переноса одного моля метиленовых групп из раствора на поверхность.

Свободно от недостатков правила Дюкло - Траубе эмпирическое уравнение Шишковского (1909 г.), устанавливающее зависимость поверхностного натяжения раствора от его концентрации:

, (1.1.105)

где А – постоянная для всего гомологического ряда, не зависящая от природы ПАВ; при температуре 20°С ; K – постоянная, характеризующая увеличение поверхностной активности при переходе к каждому последующему члену гомологического ряда; .

Замечательно, что это уравнение, полученное на основании обобщения экспериментальных данных, оказалось очень точным и применимым практически для всех ПАВ в широкой области концентраций растворов. Если концентрация ПАВ достаточно велика и следовательно Kc>>1, то единицей в уравнении Шишковского (1.1.105 ) можно пренебречь, тогда

или

. (1.1.106)

Обозначим постоянной В постоянные при изотермических условиях величины , тогда

. (1.1.107)

Следовательно, при относительно высокой концентрации растворов ПАВ их поверхностное натяжение должно уменьшаться экспоненциально с увеличением концентрации.

Уравнение (1.1.107) может быть получено непосредственно из уравнения изотермы адсорбции Гиббса:

.

При достаточно высокой концентрации растворенного вещества адсорбция достигает предела , т.е. Г = Гmax , поэтому

, (1.1.108)

где при постоянной температуре правая часть представляет собой постоянную величину и может быть обозначена RT Гmax = A. Следовательно,

,

откуда после интегрирования получаем

. (1.1.109)

Таким образом, уравнение Шишковского может быть выведено из уравнения Гиббса, так как уравнения (1.1.107) и (1.1.109) идентичны. Точность уравнения Шишковского связана с тем, что в нем уже заложено условие насыщения адсорбционного слоя.

Если уравнение Шишковского в форме

(1.1.110)

продифференцировать

, (1.1.111)

и подставить в уравнение Гиббса величину

, (1.1.112)

то уравнение изотермы адсорбции примет вид

. (1.1.113)

В такой форме уравнение изотермы адсорбции носит название изотермы Ленгмюра. Американский ученый И. Ленгмюр в 1917 г. развил представление о мономолекулярной адсорбции и на основании молекулярно- кинетической теории получил уравнение (1.1.113) .

Уравнение Шишковского позволяет определить предел адсорбции (при Kc>>1), так как в таком случае это уравнение принимает вид

. (1.1.114)

Рис. 1.16. Зависимость поверхностного натяжения от концентрации растворов ПАВ в координатах уравнения Шишковского

Построив график , как это показано на рис. 1.16, по углу наклона можно определить предел адсорбции, а по отрезку, отсекаемому наклонной линией на оси ординат при ln c = 0, рассчитать постоянную равновесия процесса адсорбции K.

Понимание адсорбционных процессов имеет чрезвычайно важное значение, так как они лежат в основе многих процессов, протекающих на границе раздела фаз, например крашения, отмывания загрязнений, отделки текстильных материалов и т.д., т.е. в основе всех коллоидно -химических процессов на границе жидкость–газ.


Следующая страницаСодержаниеПредыдущая страница

     © ХиМиК.ру




Реклама   Обратная связь   Дизайн