Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий
Система Orphus

ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ

ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ, стремление в-ва (жидкости или твердой фазы) уменьшить избыток своей потенциальной энергии на границе раздела с др. фазой (поверхностную энергию). Определяется как работа, затрачиваемая на создание единицы площади пов-сти раздела фаз (размерность Дж/м2). Согласно др. определению, поверхностное натяжение-сила, отнесенная к единице длины контура, ограничивающего пов-сть раздела фаз (размерность Н/м); эта сила действует тангенциально к пов-сти и препятствует ее самопроизвольному увеличению.

Поверхностное натяжение-осн. термодинамич. характеристика поверхностного слоя жидкости на границе с газовой фазой или др. жидкостью. Поверхностное натяжение разл. жидкостей на границе с собств. паром изменяется в широких пределах: от единиц для сжиженных низкокипящих газов до неск. тыс. мН/м для расплавл. тугоплавких в-в. Поверхностное натяжение зависит от т-ры. Для мн. однокомпо-нентных неассоциир. жидкостей (вода, расплавы солей, жидкие металлы) вдали от критич. т-ры хорошо выполняется линейная зависимость:

3555-26.jpg

где s и s0-поверхностное натяжение при т-рах T и T0 соотв., a3555-27.jpg0,1 мН/(м·К)-температурный коэффициент поверхностного натяжения. Осн. способ регулирования поверхностного натяжения заключается в использовании поверхностно-активных веществ (ПАВ).

Поверхностное натяжение входит во мн. ур-ния физики, физ. и коллоидной химии, электрохимии. Оно определяет след. величины: 1) капиллярное давление 3555-28.jpg , где r1 и r2 -главные радиусы кривизны пов-сти, и давление насыщ. пара рr над искривленной пов-стью жидкости: 3555-29.jpg, где r-радиус кривизны пов-сти, R -газовая постоянная, Vn-молярный объем жидкости, p0- давление над плоской пов-стью (законы Лапласа и Кельвина, см. Капиллярные явления).

2) Краевой угол смачивания 3555-30.jpg в контакте жидкости с пов-стью твердого тела: cos3555-31.jpg , где 3555-32.jpg-уд. своб. поверхностные энергии твердого тела на границе с газом и жидкостью, 3555-33.jpg-поверхностное натяжение жидкости (закон Юнга, см. Смачивание).

3) Адсорбцию ПАВ 3555-34.jpg где m-хим. потенциал адсорбируемого в-ва (ур-ние Гиббса, см. Адсорбция). Для разб. р-ров 3556-1.jpg где с-молярная концентрация ПАВ.

4) Состояние адсорбц. слоя ПАВ на пов-сти жидкости: (ps + a/A2)·(A - b)= kT, где ps = (s0s) - двухмерное давление, s0 и <т-соответственно поверхностное натяжение чистой жидкости и той же жидкости при наличии адсорбц. слоя, а -постоянная (аналог постоянной Ван-дер-Ваальса), A-площадь поверхностного слоя, приходящаяся на одну адсорбир. молекулу, b -площадь, занимаемая 1 молекулой жидкости, k -постоянная Больцмана (ур-ние Фрумкина-Фольмера, см. Поверхностная активность).

5)Электрокапиллярный эффект: — ds/df = rs, где rs-плотность поверхностного заряда, f-потенциал электрода (ур-ние Липмана, см. Электрокапиллярные явления).

6) Работу образования критич. зародыша новой фазы Wc. Напр., при гомог. конденсации пара при давлении 3556-2.jpg , где p0- давление пара над плоской поверхностью жидкости (ур-ние Гиббса, см. Зарождение новой фазы).

7) Длину l капиллярных волн на пов-сти жидкости: 3556-3.jpg , где r-плотность жидкости, т-период колебаний, g-ускорение своб. падения.

8) Упругость жидких пленок со слоем ПАВ: модуль упругости 3556-4.jpg , где s- площадь пленки (ур-ние Гиббса, см. Тонкие пленки).

Поверхностное натяжение измерено для мн. чистых в-в и смесей (р-ров, расплавов) в широком интервале т-р и составов. Поскольку поверхностное натяжение весьма чувствительно к наличию примесей, измерения разными методиками не всегда дают совпадающие значения. Осн. методы измерения следующие:

1) подъем смачивающих жидкостей в капиллярах. Высота подъема 3556-5.jpg , где 3556-6.jpg -разность плотностей жидкости и вытесняемого газа, r-радиус капилляра. Точность определения поверхностного натяжения растет с уменьшением отношения r/а (а-капиллярная постоянная жидкости).

2) Измерение макс. давления в газовом пузырьке (метод Ребиндера); расчет основан на ур-нии Лапласа. При выдавливании пузырька в жидкость через калиброванный капилляр радиусом г перед моментом отрыва давление3556-7.jpg

3) Метод взвешивания капель (сталагмометрия): 3556-8.jpg (ур-ние Тейта), где G-общий вес n капель, оторвавшихся под действием силы тяжести от среза капиллярной трубки радиусом r. Для повышения точности правую часть умножают на поправочный коэф., зависящий от г и объема капли.

4) Метод уравновешивания пластины (метод Вильгельми). При погружении пластины с периметром сечения L в смачивающую жидкость вес пластины 3556-9.jpg , где G0- вес сухой пластины.

5) Метод отрыва кольца (метод Дю Нуи). Для отрыва проволочного кольца радиусом R от пов-сти жидкости требуется сила 3556-10.jpg

6) Метод сидящей капли. Профиль капли на несмачиваемой подложке определяется из условия постоянства суммы гидростатич. и капиллярного давлений. Дифференциальное ур-ние профиля капли решается численным интегрированием (метод Башфорта-Адамса). По измерениям геом. параметров профиля капли с помощью соответствующих таблиц находят поверхностное натяжение.

8) Метод вращающейся капли. Капля жидкости плотностью r1 помещается в трубку с более тяжелой (плотность r2) жидкостью. При вращении трубки с угловой скоростью w капля вытягивается вдоль оси, принимая приближенно форму цилиндра радиуса r. Расчетное ур-ние: 3556-11.jpg . Метод применяют для измерения малых поверхностных натяжений на границе двух жидкостей.

Поверхностное натяжение является определяющим фактором мн. технол. процессов: флотации, пропитки пористых материалов, нанесе-ния покрытий, моющего действия, порошковой металлургии, пайки и др. Велика роль поверхностного натяжения в процессах, происходящих в невесомости.

Понятие поверхностного натяжения впервые ввел Я. Сегнер (1752). В 1-й пол. 19 в. на основе представления о поверхностном натяжении была развита мат. теория капиллярных явлений (П. Лаплас, С. Пуассон, К. Гаусс, А.Ю. Давидов). Во 2-й пол. 19 в. Дж. Гиббс развил термодинамич. теорию поверхностных явлений, в к-рой решающую роль играет поверхностное натяжение. В 20 в. разрабатываются методы регулирования поверхностного натяжения с помощью ПАВ и электрокапиллярных эффектов (И. Ленгмюр, П. А. Ребиндер, A. H. Фрумкнн). Среди совр. актуальных проблем-развитие мол. теории поверхностного натяжения разл. жидкостей (включая расплавл. металлы), влияние кривизны пов-сти на поверхностное натяжение.

Лит.: Семенченко В. К., Поверхностные явления в металлах и сплавах, M., 1957; Оно С., Кон до С., Молекулярная теория поверхностного натяжения в жидкостях, пер. с англ., M., 1963; Русанов А. И., Фазовые равновесия и поверхностные явления, Л., 1967; Ребиндер П. А., Избранные труды. Поверхностные явления в дисперсных системах. Коллоидная химия, M., 1978; АдамсонА., Физическая химия поверхностей, пер. с англ., M., 1979; Гиббс Дж. В., Термодинамика. Статистическая механика, M., 1982; Щукин E. Д., ПерцовА. В., Амелина E. А., Коллоидная химия, M., 1982.

Б. Д. Сумм.


Яндекс.Метрика


© ХиМиК.ру



Обратная связь / Реклама / Дизайн сайта