Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий
Вакансии для химиков

Сопряжение связей

Сопряжение связей, один из важнейших видов внутримолекулярного взаимного влияния атомов и связей в органических соединениях; обусловлено взаимодействием электронных систем атомов (прежде всего валентных электронов, см. Валентность). Главный признак сопряжения — распределение по всей сопряжённой системе электронной плотности, создаваемой р- и p-электронами. Такими системами являются: чередующиеся простая и кратные связи — двойные или тройные; см. Простая связь, Кратные связи (p,p-сопряжение, как, например, в бутадиене, I; здесь и далее жирными штрихами, а также точками выделена сопряжённая система); кратная связь и атом со свободной электронной парой (р, p-сопряжение, например в винилхлориде, II); крестная связь и способная к сопряжению простая связь (s, p-сопряжение, например в хлормеркурацетальдегиде, III); две способные к сопряжению простые связи (s, s-сопряжение, например в этанолмеркурхлориде, IV). Такая классификация сопряжённых систем предложена в начале 50-х гг. 20 в. А. Н. Несмеяновым.

Общая особенность всех сопряжённых систем — «растекание» электронной плотности р- и p-электронов (см. Сигма- и пи-связи) по всей сопряжённой системе — определяет их физические и химические свойства. Так, простые связи приобретают некоторую «двоесвязность», выражающуюся, в частности, в уменьшении их длины. Например, в бутадиене длина центральной С — С-связи 1,46  вместо обычной 1,54 . Сопряжение связей проявляется также, например, в УФ- и ИК-спектрах, дипольных моментах. Наиболее характерная химическая особенность сопряжённых систем — способность вступать в реакции не только с участием одной кратной связи, но и всей сопряжённой системы как единого целого. Примером может служить, например, присоединение к бутадиену хлористого водорода:

  Количество образующихся продуктов 1,2-и 1,4-присоединения зависит от природы сопряжённой системы, от реагента и условий реакции. Сопряжение снижает внутреннюю энергию молекул и, следовательно, делает их более устойчивыми: величина энергии сопряжения колеблется между несколькими единицами и десятками ккал/моль (например, для бутадиена 3,6 ккал/моль, для бензола 35 ккал/моль, 1 ккал/моль =4,19 кдж/моль).

  Истинное распределение электронной плотности в сопряжённых системах нельзя выразить простейшими структурными формулами. Их строение более точно передаётся наборами предельных структур (см. Мезомерия, Резонанса теория), формулами с пунктирными («полуторными») связями или с изогнутыми стрелками, указывающими направление сдвига электронов, например:

  Для проявления сопряжения связей необходимо, чтобы участвующие в нём электронные системы находились в одной плоскости. Если структура молекулы не допускает этого, то говорят о пространственных препятствиях сопряжению. Так, у транс-стильбена (а), по данным УФ-спектров, обнаруживается более сильное сопряжение, чем у цис-стильбена (б), у которого бензольные ядра не могут разместиться в одной плоскости с двойной связью:

 



     © ХиМиК.ру




Реклама   Обратная связь   Дизайн