Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ПРОСТАГЛАНДИНЫ

Термин «простагландины» был введен У. Эйлером, впервые показавшим, что в сперме человека и экстрактах из семенных пузырьков барана содержатся вещества, оказывающие выраженное вазопрессорное действие и вызывающие сокращение гладкой мускулатуры матки. Предположение У. Эйлера, что эти вещества являются специфическим секретом предстательной

железы (prostata), не подтвердилось, поскольку, как теперь установлено, они содержатся во всех органах и тканях . Тем не менее этот термин в литературе сохранился (синонимы: простатогландины, простагландины).

В последнее десятилетие простагландины и родственные им биологически активные соединения (лейкотриены, простациклины, тромбоксаны) были предметом пристального внимания исследователей. Объясняется это тем, что, помимо широкого распространения в тканях, они оказывают сильное фармакологическое действие на множество физиологических функций организма, регулируя гемодинамику почек, сократительную функцию гладкой мускулатуры, секреторную функцию желудка, жировой, водно-солевой обмен и др. Имеются данные о том, что простагландины, вероятно, не являются «истинными» гормонами, хотя некоторые авторы считают их «локальными, местными гормонами», однако было показано, что они модулируют действие гормонов. Биологические эффекты простагландинов, по-видимому, опосредованы через циклические нуклеотиды (см. далее).

В последнее время были подтверждены представления С. Бергстрёма и сотр., что предшественником всех простагландинов являются полиненасыщенные жирные кислоты, в частности арахидоновая кислота (и ряд ее производных, дигомо-γ-линоленовая и пентаноевая кислоты, в свою очередь образующиеся в организме из линолевой и линоленовой кислот) (см. главу 11). Арахидоновая кислота после освобождения из фосфоглице-ринов (фосфолипидов) биомембран под действием специфических фосфоли-паз А (или С) в зависимости от ферментативного пути превращения дает начало простагландинам и лейкотриенам по схеме:

 

Циклооксигеназный путь превращения арахидоновой кислоты

Первый путь получил наименование циклооксигеназного пути превращения арахидоновой кислоты, поскольку первые стадии синтеза простагландинов катализируются циклооксигеназой, точнее простаглан-дин-синтазой (КФ 1.14.99.1). В настоящее время известны данные о биосинтезе основных простаноидов (рис. 8.3). Центральным химическим процессом биосинтеза является включение молекулярного кислорода (двух молекул) в структуру арахидоновой кислоты, осуществляемое специфическими оксигеназами, которые, помимо окисления, катализируют циклизацию с образованием промежуточных продуктов – простагландинэндоперекисей PG2[H2], обозначаемых PGG2и PGH2; последние под действием проста-гландин-изомераз превращаются в первичные простагландины. Различают 2 класса первичных простагландинов: растворимые в эфире простагланди-ны PGE и растворимые в фосфатном буфере простагландины PGF. Каждый из классов делится на подклассы: PGE1, PGE2, PGF1, PGF2и т.д. Простациклины и тромбоксаны синтезируются из указанных промежуточных продуктов при участии отличных от изомераз ферментов. Детали механизма биосинтеза простаноидов пока до конца не выяснены, как и пути их окисления до конечных продуктов обмена.

Первичные простагландины синтезируются во всех клетках (за исключением эритроцитов), действуют на гладкие мышцы пищеварительного тракта, репродуктивные и респираторные ткани, на тонус сосудов, модулируют активность других гормонов, автономно регулируют нервное возбуждение, процессы воспаления (медиаторы), скорость почечного кровотока; биологическое действие их опосредовано путем регуляции синтеза цАМФ (см. далее).

Тромбоксан А, в частности тромбоксан А2 (ТхА2), синтезируется преимущественно в ткани мозга, селезенки, легких, почек, а также в тромбоцитах и воспалительной гранулеме из PGH2под действием тромбоксансинта-зы (см. рис. 8.3); из ТхА2 образуются остальные тромбоксаны. Они вызывают агрегацию тромбоцитов, способствуя тем самым тромбообразова-нию, и, кроме того, оказывают самое мощное сосудосуживающее действие из всех простагландинов.

Простациклин (PGI2) синтезируется преимущественно в эндотелии сосудов, сердечной мышце, ткани матки и слизистой оболочке желудка. Он расслабляет в противоположность тромбоксану гладкие мышечные волокна сосудов и вызывает дезагрегацию тромбоцитов, способствуя фибринолизу.

Следует указать также на особое значение соотношения в крови тромбо-ксаны/простациклины, в частности TxA2/PGI2для физиологического статуса организма. Оказалось, что у больных, предрасположенных к тромбозам, имеется тенденция к смещению баланса в сторону агрегации; у больных, страдающих уремией, напротив, наблюдается дезагрегация тромбоцитов. Выдвинуто предположение о важности баланса TxA2/PGI2для регуляции функции тромбоцитов in vivo, сердечно-сосудистого гомеостаза, тромботи-ческой болезни и т.д.

На рис. 8.3 представлены также пути катаболизма простаноидов. Начальной стадией катаболизма «классических» простагландинов является стереоспецифическое окисление ОН-группы у 15-го углеродного атома с образованием соответствующего 15-кетопроизводного. Фермент, катализирующий эту реакцию,– 15-оксипростагландиндегидрогеназа открыт в цитоплазме, требует наличия НАД или НАДФ. Тромбоксан инактивируется in vivo или путем химического расщепления до тромбоксана В2, или путем окисления дегидрогеназой либо редуктазой. Аналогично PGI2(простацик-лин) быстро распадается до 6-кето-РGF in vitro, a in vivo инактивируется окислением 15-оксипростагландиндегидрогеназой с образованием 6,15-ди-кето-РGF.

Второй путь превращения арахидоновой кислотылипоксигеназный путь (рис. 8.4) – отличается тем, что дает начало синтезу еще одного класса биологически активных веществлейкотриенов. Характерная особенность структуры лейкотриенов заключается в том, что она не содержит циклической структуры, хотя лейкотриены, как и простаноиды, построены из 20 углеродных атомов. В структуре лейкотриенов содержатся четыре двойные связи, некоторые из них образуют пептидолипидные комплексы с глутатионом или с его составными частями (лейкотриен D может далее превращаться в лейкотриен Е, теряя остаток глицина). Основные биологические эффекты лейкотриенов связаны с воспалительными процессами, аллергическими и иммунными реакциями, анафилаксией и деятельностью гладких мышц. В частности, лейкотриены способствуют сокращению гладкой мускулатуры дыхательных путей, пищеварительного тракта, регулируют тонус сосудов (оказывают сосудосуживающее действие) и стимулируют сокращение коронарных артерий. Катаболические пути лейкотриенов окончательно не установлены.

Липоксигеназный путь превращения арахидоновой кислоты

Таким образом, благодаря своему широкому распространению в тканях и высокой и разносторонней биологической активности простагландины (и вообще простаноиды) и лейкотриены находят все более широкое применение в медицинской практике в качестве лекарственных препаратов. Эти обстоятельства стимулируют проведение дальнейших исследований как по пути поиска новых простаноидов, так и по пути химического синтеза их аналогов с защищенными функциональными группами, более стабильными при введении в организм.

Предыдущая страница | Следующая страница

СОДЕРЖАНИЕ

Еще по теме:

     © ХиМиК.ру




Реклама   Обратная связь   Дизайн