Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ГЕРМАНИЙ

ГЕРМАНИЙ (от лат. Germania-Германия, в честь родины К. А. Винклера; лат. Germanium), Ge, хим. элемент IV гр. периодич.системы, ат. н. 32, ат. м. 72,59. Прир. германий состоит из четырех стабильных изотопов с мае. ч. 70 (20,52%), 72 №3%), 73 (7,76%), 74 (36,54%) и 76 (7,76%). Поперечное сечение захвата тепловых нейтронов 2,35*10-28 м2. Конфигурация внеш. электронной оболочки 4s24p2; степень окисления + 4 (наиб. устойчива), + 3, + 2 и + 1; энергия ионизации при последоват. переходе от Ge° к Ge4+ соотв. 7,900, 15,9348, 34,22, 45,70 эВ; электроотрицательность по Полингу 1,8; атомный радиус 0,139 нм, ионный радиус (в скобках указаны координац. числа) для Ge2 + 0,087 нм (6), для Ge4+ 0,053 нм(4), 0,067 нм(6).

Содержание германия в земной коре 1,5*10-4% по массе. Относится к рассеянным элементам. В природе в своб. виде не встречается. Содержится в виде примеси в силикатах, осадочных железных, полиметаллич., никелевых и вольфрамовых рудах, углях, торфе, нефтях, термальных водах и водорослях. Важнейшие минералы: германит Cu,(Ge, Fe, Ga)(S, As)4 (6,2-10,2% германия), яргиродит Ag8GeS6 (3,65-6,93%), рениерит Cu3(Fe, G.e,Zn)(S, As)4 (5,46-7,80%), плюмбогерманит (Pb,Ge,Ga)2SO4(OH)2*2H2O*(8,18%).

В США, Италии, ФРГ и нек-рых др. странах осн. источник германия - побочные продукты переработки; медно-свинцово-цинковых сульфидных руд, в Заире и Намибии-полиметаллич. руды. В золе бурых углей содержится от 0,0005 до 0,34% германия, в золе каменных углей-от 0,001; до 1-2% германия.

Свойства. Компактный германий - вещество серебристого цвета с металлич. блеском; кристаллич. решетка устойчивой модификации Ge I-кубич. гранеценрированная типа алмаза (а = = 0,566 нм). При высоких давлениях Ge I переходит в др. модификации (см. табл.), к-рые, по сравнению с ним, отличаются большими плотностью и электрич. проводимостью.

КРИСТАЛЛИЧЕСКИЕ МОДИФИКАЦИИ ГЕРМАНИЯ ПРИ ВЫСОКИХ ДАВЛЕНИЯХ
Кристаллические модификации германия

При конденсации пара германия на пов-сти с т-рой 100-370 °С образуется аморфный германий, к-рый при 250 °С и обычном давлении или при 20 °С и давл. 600 МПа превращ. в Ge I. Т. пл. 938,25°С, т. кип. 2850°С; плотн. 5,33 г/см3; Cop 23,32 Дж/(моль*К);1104-15.jpg 37,3 кДж/моль,1104-16.jpg 369,04 кДж/моль; So298 31,09 Дж/(моль*К); давление пара 0,665 Па (938 °С); температурный коэф. линейного расширения 6,1*10-6 К-1 (273-603 К) и 6,6*10-6 К-1 (573-923 К); теплопроводность 5,62 Вт/(м*К);1104-17.jpg0,6 Н/м (ок. т-ры плавления). Германий диамагнитен. Обладает полупроводниковыми св-вами; ширина запрещенной зоны 0,66 эВ (300 К);1104-18.jpg 0,47 Ом*м (300 К); концентрация носителей тока с собств. проводимостью 2*107м-3 (300 К); при 300 К подвижность электронов 0,39 м2/(В*с), дырок-0,19 м2/(В*с). Для получения германия с дырочной проводимостью используют легирующие добавки В, Al, Ga, In, с электронной - Р, As, Sb.

Германий хрупок: не поддается холодной и горячей обработке давлением до ~ 550 °С, выше этой т-ры становится пластичным. Твердость по минералогич. шкале 6,0-6,5 (его распиливают на пластины с помощью алмазного или ме-талдич. диска с применением абразива). Прозрачен для ИК-света при длинах волны1104-19.jpg> 2 мкм, показатель преломления 4,0102-4,0010 (при1104-20.jpgот 2,06 до 16,00 мкм), 3,4 (1104-21.jpg= SB 550 мкм) и 4,1 (1104-22.jpg=690 мкм); коэф. отражения света с1104-23.jpg = 1-10 мкм-36-39%.

Германий устойчив к действию воздуха, воды, О2, соляной к-ты и разб. H2SO4, медленно взаимод. с конц. H2SO4. Реагирует с царской водкой и HNO3 с образованием на пов-сти пленки GeO2. Слабо взаимод. с р-рами едких щелочей, в присут. Н2О2-легко, при этом образуются соли германаты. Выше 700 °С быстро окисляется на воздухе до GeO2, в токе О2 или СО2-до германия оксидов GeO и GeO2. Образует с S при 600-700°С GeS, при 1000-1100°C-GeS2, с Se при ~ 500°C-GeSe. Легко взаимод. с галогенами, давая тетрагалогениды (см. Германия галогениды). С N2, Si, Н2 и С не реагирует. Известны летучие германоводороды GenН2n+2, а также нитрид. Образует германипорганические соединения,

С более электроположит. элементами германий образует германиды двойные (напр., FeGe, Cu3Ge) и тройные (напр., MnAlGe)-хрупкие твердые в-ва с металлич. блеском. Большинство имеет высокие т-ры плавления; наиб. тугоплавкие-Zr,Ge3 (т. пл. 2330 °С), Hf5Ge3 (2200 °С), Th3Ge2 (2000 °С). Многие обладают металлич. проводимостью, для нек-рых характерны высокие т-ры перехода в сверхпроводящее состояние (напр., 6,0 К для V3Ge и 6,9 К для Nb3Ge). Среди германидов есть полупроводники (напр., Mg2Ge), ферромагнетики (напр., Mn5Ge3). Германиды щелочных и щел.-зем. металлов окисляются на воздухе, гидролизуются водой, разлагаются к-тами; более стойки к действию агрессивных сред соед. переходных металлов. Получают германиды в осн. спеканием или сплавлением элементов, а также электролизом расплавов, восстановлением оксидов и др. способами. Нек-рые германиды - перспективные полупроводниковые и магн. материалы, материалы для термоэлементов и ядерной техники, упрочнители сплавов.

Наиб. практически важным соед. германия - оксидам и галогенидам посвящены специальные статьи. Ниже приводятся сведения о нек-рых др. соед. этого элемента.

Моносульфид GeS-темно-серые кристаллы; т. пл. 658°С; плотн. 4,01 г/см3;1104-24.jpg -73,40 кДж/моль; не взаимод. с водой; реагирует с разб. неорг, к-тами и р-рами щелочей. Получают взаимод. Ge с S при 600-700 °С, восстановлением GeS2 водородом, р-цией H2S с солями Ge(II). GeS - полупроводниковый материал.

Дисульфид GeS2-белое аморфное (получают осаждением H2S из кислых р-ров GeCl4) или кристаллич. (образуется при взаимод. S и Ge при 1000-1100°С) в-во; т. пл. 840°С; плотн. 2,94 г/см3;1104-25.jpg - 150,06 кДж/моль; водой гидролизуется, реагирует с соляной к-той и р-рами щелочей, с (NH4)2S образует (NH4)6Ge2S7. Дисульфид германия - перспективный полупроводниковый материал.

Селенид GeSe - темно-коричневые кристаллы; т. пл. 670°С (с разл.); не взаимод. с водой; окисляется HNO3. Получают взаимод, Ge с So при 500 °С в атмосфере СО2 с послед, плавлением продукта р-ции и быстрым охлаждением. Обладает полупроводниковыми св-вами.

Теллурид GeTe-сероватые кристаллы с металлич. блеском; т. пл. 725°С; не взаимод. с водой; разлагается царской водкой и смесью соляной к-ты с Н2О2. Получают сплавлением Ge с Те. Обладает полупроводниковыми св-вами, выше 375 °С-ярко выраженными термоэлектрич. св-вами. Компонент сплавов с Мп, Сr и др.

Гидрид GeH4 - бесцв. газ; т. пл. — 165 °С, т. кип. — 88,5 РС; т. разл, ок. 300 °С; раств. в воде и полярных орг. р-рителях. Получают взаимод. GeO2 с водным р-ром Na[BH4]. Применяют для получения полупроводникового

Нитрид Ge3N4-бесцв, или светло-желтые кристаллы; т. разл. ок. 1400°С, начинает выделять N2 ок. 450 °С; плотн. 5,25 г/см3; диамагнитен; не взаимод. с водой, р-рами щелочей и разб. к-тами. Получают действием NH3 на Ge или GeO2.

Получение. В кач-ве сырья для получения германия используют побочные продукты переработки руд цветных металлов, золу от сжигания углей, нек-рые продукты коксохим. произ-ва (напр., смолы и надсмольные воды). Германийсодержащее сырье обогащают методами флотации, магнитным или др., а затем выделяют концентрат германия При пирометаллургич. способе процесс обычно проводят при 800-1800 °С в восстановит. атмосфере (СО, Н2) в присут. S (или H2SO4, сульфатов щелочных или щел.-зем. металлов); Германий частично или полностью переходит в газовую фазу в виде GeO, GeO2, GeS, GeS2, Ge, к-рые улавливают вместе с др. летучими компонентами и пылью.

Содержащие германий пыли, получающиеся при переработке руд цветных металлов, обычно выщелачивают разб. р-ром H2SO4. Из р-ров выделяют концентрат германия (соосаждением с др. элементами, напр. с Fe в виде Fe(OH)3 при рН 4,8-5,4), к-рый затем сушат, обжигают, обрабатывают конц. соляной к-той и извлекают образовавшийся GeCl4 дистилляцией. Из сернокислых р-ров германия извлекают также методом ионного обмена с использованием в кач-ве элюента соляной к-ты. Солянокислый р-р подвергают дистилляции с получением GeCl4 либо растворенный тетрахлорид гидролизуют р-ром щелочи до GeO2.

При переработке коксующихся углей германий частично (5-10%) попадает в смолу и надсмольную воду, откуда его извлекают в виде комплекса с таннином, затем его сушат и обжигают (400-500 °С); при этом получают концентрат, содержащий 30-40% германия, из к-рого выделяют германий в виде GeCl4. При сжигании углей или их газификации германия возгоняется вместе с летучими частями золы. Золу подвергают восстановит. плавке с флюсом и коллектором германия - CuO или Fe2O3. Полученный сплав Си или Fe с германием растворяют в водном р-ре FeCl3 в токе С12, подкисляют р-р H2SO4 и извлекают германий в виде GeCl4. По др. способу пыль сплавляют с NaOH, плав выщелачивают водой, очищают р-р от примесей А1 и Si и выделяют образовавшийся в результате гидролиза GeO2.

Из золы, богатой германием (более 1%), его извлекают также обработкой 31%-ной соляной к-той при 105-110°С. Применяют также метод, по к-рому золу, содержащую менее 1% германия, подвергают пирометаллургич. обработке в электрич. или циклонных печах; сублимат выщелачивают конц. НCl либо разб. H2SO4, из р-ра германия выделяют соосаждением, ионным обменом, цементацией или др. способами.

Для получения германия техн. GeCl4 очищают ректификацией в кварцевых колоннах, экстракцией соляной к-той, термодиффузией, направленной кристаллизацией и др. методами. После этого GeCl4 гидролизуют чистой водой при 20-30 °С; полученный GeO2 промывают водой и сушат спиртом или токами СВЧ и восстанавливают до германий водородом при 600-700 °С Порошкообразный германий при 1000-1050 °С сплавляют. Рафинируют германий методами зонной плавки и направленной кристаллизации. Монокристаллы выращивают по методам Чохральского или Степанова. В процессе выращивания германия легируют спец. добавками (Sb, Ga, As, Si и др.), регулируя те или иные его св-ва. Производится германий полупроводниковой чистоты с содержанием примесей 10-3 — — 10-4%; чистоту германия определяют по величине и знаку эдс Холла или с помощью нейтронно-активационного анализа.

Определение. Гравиметрически германий определяют: в виде GeO2, образующегося при прокаливании GeS2, получаемого осаждением сероводородом из соляно- или сернокислых р-ров соед. Ge4+; в виде MgGeO3; в виде гидроксихинолиниевой соли германомолибденовой к-ты (C9H7NO)4*H4[Ge(Mo2O7)6]. Германий определяют также алкалиметрически в присут. пирокатехина или пирогаллола, образующих с соед. Ge4+ растворимые комплексные двухосновные к-ты (индикатор бромкрезоловый пурпуровый). При комплексонометрич. определении германия избыток комплексона (двунатриевой соли этилендиаминтетрауксусной к-ты) после взаимод. с Ge4+ оттитровывают р-ром ZnSO4 в присут. ксиленолового оранжевого в кач-ве индикатора при рН 5,2-6,1. Определению германия данным методом мешают щел.-зем., тяжелые и цветные металлы. наиб. чувствительный метод определения малых кол-в германия - фотометрический с помощью фенилфлуорона в солянокислой или сернокислой среде. Отделение германия от мешающих элементов осуществляется дистилляцией GeCl4 из 6 М соляной к-ты в присут. Н3РО4 или его экстракцией СС14 из 8-9 М соляной к-ты.

Качественно германия обнаруживают с помощью эмиссионного спектрального анализа (источник возбуждения-дуга), а также по цветным р-циям, напр. по образованию ярко-желтой германомолибденовой к-ты H8[Ge(MO2O7)6] с послед. восстановлением Mo6+ бензидином или щелочным р-ром Na2SriO2. Специфич. р-ции на германий - взаимод. с хинализарином или с гидроксинафталинсульфоновой к-той.

Применение. Германий - полупроводниковый материал, используемый в виде монокристаллов очень высокой чистоты для изготовления диодов, транзисторов, фотодиодов и фоторезисторов. Из него производят датчики Холла, линзы для приборов ИК-техники, рентгеновской спектроскопии и детекторы ионизирующих излучений (чувствительность 1014 ат/см3), термометры сопротивления, эксплуатируемые при т-ре жидкого Не. Сплавы германия с Аи, обладающие высокой твердостью и прочностью, используют в ювелирной и зубопротезной технике для прецизионных отливок. Сплавы с Si или с В-высокоэффективные термоэлектрич. материалы, с Nb и Ti- сверхпроводники, с Al, Si и Fe-термоэмиссионные материалы, с Мп и А1 - магнитные. Нек-рые сплавы германия применяют в кач-ве припоев (напр., с Al, Si и Аи), антикоррозионных покрытий (со Sn или со Sb).

Мировое произ-во германия (без СССР) 65 кг в год. Германий открыт в 1886 К. А. Винклером.


===
Исп. литература для статьи «ГЕРМАНИЙ»: Тананаев И. В., Шпирт М. Я., Химия германия, М., 1968; Самсонов Г. В., Бондарев В. Н., Германиды, М., 1968; Назаренко В. А., Аналитическая химия элементов. Германий, М., 1973; Шпирт М. Я., Физико-химические основы переработки германиевого сырья, М., 1977; Нашельский А. Я., Производство полупроводниковых материалов, М., 1982. Н.М. Эльхонес, Л. И. Локшина.

Страница «ГЕРМАНИЙ» подготовлена по материалам химической энциклопедии.

Еще по теме:

     © ХиМиК.ру




Реклама   Обратная связь   Дизайн