Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ВЗРЫВ

ВЗРЫВ, выделение большого кол-ва энергии в ограниченном объеме в-ва за короткий промежуток времени. Различаются взрывы двух типов. К первому типу относят взрывы, обусловленные высвобождением хим. или ядерной энергии в-ва, напр. взрывы хим. взрывчатых веществ, смесей газов, пыли и (или) паров, а также ядерные и термоядерные взрывы. При взрывах второго типа выделяется энергия, полученная в-вом от внеш. источника. Примеры подобных взрывов - мощный электрич. разряд в среде (в природе - молния во время грозы); испарение металлич. проводника под действием тока большой силы; взрыв при воздействии на в-во нек-рых излучений большой плотности энергии, напр. сфокусированного лазерного излучения; внезапное разрушение оболочки со сжатым газом.

Взрывы первого типа могут осуществляться цепным или тепловым путем. Цепной взрыв происходит в условиях, когда в системе возникают в больших концентрациях активные частицы (атомы и радикалы в хим. системах, нейтроны -в ядерных), способные вызвать разветвленную цепь превращений неактивных молекул или ядер (см. Цепные реакции). В действительности не все активные частицы вызывают р-цию, часть их выходит за пределы объема в-ва. Т.к. число уходящих из объема активных частиц пропорционально пов-сти, для цепного взрыва существует т. наз. критич. масса, при к-рой число вновь образующихся активных частиц еще превышает число уходящих. Возникновению цепного взрыва способствует сжатие в-ва, т.к. при этом уменьшается пов-сть. Обычно цепной взрыв газовых смесей реализуют быстрым увеличением критич. массы при увеличении объема сосуда или повышением давления смеси, а взрыв ядерных материалов - быстрым соединением неск. масс, каждая из к-рых меньше критической, в одну массу, большую критической.

Тепловой взрыв возникает в условиях, когда выделение тепла в результате хим. р-ции в заданном объеме в-ва превышает кол-во тепла, отводимого через внеш. пов-сть, ограничивающую этот объем, в окружающую среду посредством теплопроводности. Это приводит к саморазогреву в-ва вплоть до его самовоспламенения и взрыва (см. Воспламенение, Горение).

При взрывах любого типа происходит резкое возрастание давления в-ва, окружающая очаг взрыва среда испытывает сильное сжатие и приходит в движение, к-рое передается от слоя к слою, - возникает взрывная волна. Скачкообразное изменение состояния в-ва (давления, плотности, скорости движения) на фронте взрывной волны, распространяющееся со скоростью, превышающей скорость звука в среде, представляет собой ударную волну. Законы сохранения массы и импульса связывают скорость фронта волны, скорость движения в-ва за фронтом, сжимаемость и давление в-ва. Поэтому, чтобы определить все мех. параметры взрывной волны, достаточно измерить экспериментально какие-либо два из них (обычно скорости фронта и движения в-ва за фронтом). Для взрывных волн с давлением на фронте, не превышающем неск. ГПа, существуют методы прямого определения давления и сжимаемости. Разработаны также методы определения немех. параметров волны - т-ры, электрич. проводимости в-ва за фронтом и т.п.

Разрушительное воздействие взрывов на окружающие объекты обусловлено взрывной волной. Давление в-ва на фронте волны по мере ее удаления от места взрыва падает; расстояние, на к-ром взрывные волны оказывают одинаковое воздействие, увеличивается пропорционально кубич. корню из кол-ва энергии, выделяющейся при взрыве.

Взрывы используют в стр-ве, горном деле, металлообработке. В научных исследованиях взрывы применяют для изучения св-в в-в в широкой области параметров состояния - от разреженных газов до жидкостей и твердых тел. При этом достигают таких параметров, к-рые недоступны при др. методах воздействия, напр. давления порядка тысяч ГПа. Вследствие огромных скоростей нагружения при этом может возникать неравновесное состояние в-ва с образованием возбужденных состояний молекул. Особенно значительные эффекты наблюдаются в зоне ударного скачка, ширина к-рой ~ 10 нм, поскольку время воздействия на в-во ударного скачка составляет 10-12-10-13 с, что соответствует временам внутримолекулярных колебаний. Под действием ударного скачка сначала резко увеличивается энергия поступат. движения молекул, к-рая затем распределяется по внутренним степеням свободы. В результате происходит разрыв хим. связей, соответствующих максимальным частотам колебаний, и оказываются возможными взаимодействия, к-рые другими способами реализовать трудно или вовсе невозможно. В частности, происходят хим. р-ции с образованием продуктов, специфичных только для этого типа воздействия на в-во. Так, нек-рые аром. соед. в сравнительно слабых ударных волнах, когда давление не превышает 1,5 ГПа, а т-ра 200°С, претерпевают частичное разложение с разрушением бензольного кольца, тогда как в статич. условиях бензольное кольцо сохраняется при таких же давлениях и гораздо более высоких т-рах.

Под воздействием ударных волн, образующихся при взрыве, наблюдается полимеризация с большими скоростями, за времена порядка 10-6 с, причем в отсутствие катализаторов. Активные частицы, ведущие процесс, образуются в результате деструкции части молекул мономера в зоне ударного скачка. Так, при обычной полимеризации триоксана мол. масса образующегося полимера не превышает 150 тыс., тогда как при взрыве получают полимеры с мол. массой до 1,3 млн. Твердые хрупкие материалы дробятся под действием ударных волн до частиц размером в несколько мкм с большим числом кристаллич. дефектов и, следовательно, более высокой реакционной способностью и спекаемостью (при дроблении в мельницах число дефектов в частицах, как правило, уменьшается). Пром. значение приобрело использование взрывов для синтеза сверхтвердых материалов (напр., алмазов, NiB), создания новых композиционных материалов, получаемых свариванием металлов, прессованием и др., обработки традиционных материалов (напр., сталей) с целью существенного улучшения их эксплуатационных св-в (твердости, износостойкости).


===
Исп. литература для статьи «ВЗРЫВ»: Семенов Н. Н., О некоторых проблемах химической кинетики и реакционной способности, 2 изд., М., 1958; Доку чаев М. М., Родионов В. Н., Ромашов А. Н., Взрыв на выброс, М., 1963; Действие излучения большой мощности на металлы, М., 1970; Физика взрыва, 2 изд., М., 1975; Куди-нов В. М., К о роте ев А. Я., Сварка взрывом в металлургии, М., 1978; Дерибас А. А., Физика упрочнения и сварки взрывом, 2 изд., Новосиб., 1980. А. Н. Дремин.

Страница «ВЗРЫВ» подготовлена по материалам химической энциклопедии.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн