Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


КОРРЕЛЯЦИОННЫЕ СООТНОШЕНИЯ

КОРРЕЛЯЦИОННЫЕ СООТНОШЕНИЯ, характеризуют эмпирически устанавливаемые зависимости между разл. св-вами одного ряда хим. соед. (реакц. способностью, физ., термодинамич. св-ми, биол. активностью и др.) и параметрами структуры, среды или св-вами того же или др. ряда соединений. Формальный прототип большинства корреляционных соотношений - ур-ниe Брёнстеда, выражающее найденную экспериментально линейную зависимость между константами скорости р-ций kc кислотного (основного) катализа и константами равновесия диссоциации к-ты (основания) Кa:
lgke=algKa+c, (1)
где а и с - эмпирич. параметры для данной р-ции. Ур-ние (1) - пример выполнения общего соотношения линейности своб. энергий (ЛСЭ), согласно к-рому изменения в своб. энергиях р-ций DG° и в своб. энергиях активации (DG++), вызываемые в разл. р-циях одинаковыми вариациями структуры реагирующих соед. или среды, связаны линейными зависимостями:
dRDGi=adRDGj+b, (2)
где dR - оператор изменения структуры (напр., при введении заместителя R) или среды, i, j - индексы р-ций. Ур-ние (2) отражает широкую эмпирич. закономерность: сходные изменения в строении соед. приводят к сходным изменениям в реакц. способности. Оно не вытекает из принципов термодинамики, поэтому корреляционные соотношения, основанные на соотношении ЛСЭ, принято относить к экстратермодинамическим. Важнейшее корреляционные соотношения этого типа - ур-ние Гаммета, сопоставляющее изменения в константах скорости или равновесия, индуцируемые введением заместителей в ароматич. бензольное ядро в соед. I, с изменениями в константах диссоциации бензойных к-т II при аналогичном замещении:
dRDGidRDG0БK, (3)
где DGi - своб. энергии р-ции или активации произвольной р-ции соед. I в произвольных (но одинаковых для данной серии-,соед.) условиях, а DG0БК - своб. энергия диссоциации бензойной к-ты в заданных (не обязательно идентичных) условиях. Ур-ние (3) сводится к виду:
lg(k/k0)=rlg(K/K0)БК (4)
где k - константа скорости (равновесия) р-ции соед. I с заместителем R, а k0 - та же константа для соед. с R=Н, К и К0 - константы диссоциации соответствующих бензойных к-т II, r - константа, характеризующая относительную (в сравнении с эталонной серией р-ций диссоциации бензойных к-т) чувствительность р-ций соед. I к структурным изменениям.
461_480-49.jpg
Реакц. серия диссоциации бензойных к-т в воде при 25 °С выбрана как стандартная, при этом величины lg(K/K0)=s представляют константы заместителей R. Ур-ние (4) известно как ур-ние Гаммета и обычно записывается в форме:
lgk=rs+lgk0 (5)
Ур-ние (5) позволяет с точностью b15% рассчитывать кинетич. и равновесные параметры мн. р-ций производных бензола с мета- и пaра-заместителями, располагая константами заместителей и величинами r, определенными статистически достоверно для неск. соед. данной реакц. серии.
корреляционных соотношений для структурных вариаций субстрата. В табл. приведены значения констант заместителей s для нек-рых наиб. важных групп (sм и sn - константы заместителей в мета- и пара-положениях). Для р-ций, ускоряемых электронодонорными заместителями (s<0), r<0, для р-ций, ускоряемых электроноакцепторными заместителями
Константы заместителей
(s>0), r>0. Абс. величина r тем больше, чем более полярно переходное состояние лимитирующей стадии р-ции. Напр., для нитрования соед. I (Y=Н) в ацетоне при 25 °С r=-7,3, для замещения Y=F в соед. I на метоксигруппу под действием CH3ONa r=+7,55, для этерификации бензойных к-т II метиловым спиртом r=-0,58. Рассчитанные по данным о константах диссоциации бензойных к-т II значения а для заместителей, способных к сопряжению с реакц. центрами Y в соединениях I, оказываются заниженными по абс. величине. Такие заместители, как NO2, CHO, СООСН3, взаимодействующие с сильными нуклеоф. группами Y=ОН, О-, СH2-, NH2 и др., или электронодонорные заместители ОН, О-, NH2, SR, взаимодействующие с электроф. реакц. центрами Y=COR, NO2, С+ и др., характеризуются соотв. нуклеоф. s - и электроф. s+ константами, вычисляемыми на основе подходящих реакц. серий. Применение констант s - и s+ позволяет сохранить форму корреляционного соотношения (5). Более точные корреляции достигаются при переходе к многопараметровым ур-ниям, в к-рые включаются константы заместителей, характеризующие отдельно индуктивное, мезомерное и стерич. влияние заместителей. Если оставить в реакц. серии соед. II в качестве заместителей только группы, своб. от сопряжения с реакц. центром (ОСН3, F, Cl, Вr, I, СОСН3), можно получить ряд констант s°, значения к-рых учитывают индукц. эффект заместителя в бензольном кольце и индуцируемую поляризацию p-электронов кольца. Посредством подбора подходящих модельных соед. (напр., 4-замещенных бицикло [2,2,2] октан-1-карбоновых к-т) можно, пользуясь соотношением типа (5), получить константы, описывающие только индукц. влияние sI, и выделить мезомерные константы заместителей sс и s0c:
sс=sn-sI s0c=s0n-sI,
где s0n - константа заместителя в пара-положении. Корреляц. четырехпараметровые ур-ния:
461_480-51.jpg
позволяют раздельно оценивать вклады индукц. и мезомерных эффектов заместителей в относит. реакц. способность. Известны другие корреляционные соотношения [Юкава-Цуно, Дьюара - Грисдейла, Свена(Свейна) - Лаптона], в к-рых применяются др. подходы к разделению общего эффекта заместителя на его составляющие. Рассмотренные константы заместителей характеристичны для производных бензола I. Развиты корреляционные соотношения для характеристики реакц. способности др. типов соед. - полиядерных ароматич., гетероциклич., олефинов и алифатич. соединений. В последнем случае применяют ур-ние Тафта [s* - константа Тафта, k и kCH3 - константы скорости или равновесия р-ций алифатич. соед. соотв. RY и CH3Y, r* - параметр, аналогичный r в ур-нии (4)]:
461_480-52.jpg
и для соед. с неск. заместителями:
461_480-53.jpg
причем s* линейно связаны с константами sI:
s*(R)=6,23sI(R) sI(R)=0,45s*(CH2R)
Для учета влияния пространств. эффектов заместителей на реакц. способность алифатич. соед. вводятся стерич. константы заместителей Es, определяемые по данным о скоростях кислотного гидролиза сложных эфиров: Es=lg(k/k0), где k иk0 - константы скорости соотв. для. соед. с заместителем R в ацильной компоненте и для ацетата. Константы Es определяются объемом заместителей и линейно зависят от их ван-дер-ваальсовых радиусов. Совместный учет влияния электронных и пространств. факторов на реакц. способность алифатич. соед. осуществляется при помощи ур-ния:
lg(k/k0)=r*s*+rsEs, (9) где rs - параметр, аналогичный по смыслу r в ур-нии (4).
Корреляционные соотношения для вариации реагентов применяют для количеств, описания р-ций с варьируемым реагентом при постоянном субстрате. Для бимолекулярного нуклеоф. замещения выполняется ур-ние Свена-Скотта: lg(k/k0)=s.n. (10) где k и k0 - константы скорости р-ции субстрата соотв. с данным нуклеофилом и с водой, параметр s характеризует чувствительность р-ции к варьированию реагента (селективность), константы п определяются по данным о кинетике р-ций стандартного субстрата - СН3Вr с рядом нуклеофилов и зависят от условий проведения р-ции (среды, т-ры). Для водных р-ров при 0 °С значения п для нек-рых нуклеофилов равны 6,35 (для S2О32-, 5,13 (CN-), 4,16 (NH3), 2,99 (Сl-), 1,88 (F-), 0 (Н2O). Для р-ций стабильных орг. катионов и активир. карбонильных соед. с нуклеофилами хорошая корреляция достигается при помощи ур-ния Ритчи: lgk=N++C, (11) где С - константа, характерная для субстрата [напр., С=-5 для трис-(n-диметиламинофенил)метильного катиона и С - 1 для n-нитрофенилдиазония], значение N+ - ф-ции среды и т-ры. Так, N+=13,1 для нуклеофила C6H5S- в диметилсульфоксиде, а в СН3ОН составляет 10,7. Отсутствие в ур-нии (11) константы чувствительности р-ции означает, что два субстрата (1 и 2) имеют одинаковую селективность по отношению к одному и тому же нуклеофилу: lg(k1/k2)=С12. Известен целый ряд многопараметровых корреляционных соотношений для учета влияния варьируемого реагента на реакц. способность. Корреляционные соотношения для характеристики влияния р-рителя на реакц. способность. Соотношения ЛСЭ выполняются для характеристики влияния варьирования р-рителя на скорость или константы равновесия заданной р-ции. Для корреляции скоростей сольволиза используют ур-ние Грюнвальда - Уинстейна: lg(k/k0)=m.Y, (12) где т-константа чувствительности, аналогичная реакц. константе r в ур-ниях (4)-(9), а Y-параметр полярности р-рителя. В качестве стандартной серии (т =I) выбран сольволиз трет-С4Н9Сl в 80%-ном этаноле. Применимость ур-ния (12) ограничивается сольволизом в достаточно высокополярных р-рителях (Y=0 для 80%-ного этанола, -0,60 для формамида, -3,26 для трет-бутанола, 3,49 для воды). Для более широкого круга р-ций применяют многопараметровые корреляционные соотношения, включающие параметры р-рителей, рассчитанные на основе спектральных данных (смещения длинноволновых полос поглощения полярных соед. в разл. р-рителях), - параметры Димрота FT, константы Косовера Z, константы Тафта -Камле p*. В основе корреляционных соотношений для физ. характеристик лежит установленная квантовомех. расчетами линейная зависимость констант заместителей а от величин электронных зарядов, индуцируемых заместителем на реакц. центре и прилегающих атомах, и др. характеристик электронного распределения в молекулах и ионах. Известны разнообразные корреляционные соотношения, связывающие дипольные моменты, частоты и интенсивности полос в колебат. спектрах, хим. сдвиги ядер в спектрах ЯМР и пр. от разл. типов электронных и стерич. констант заместителей. Напр., для хим. сдвигов 19F в спектрах ЯМР мета-(Fм) и пара-замещенных (Fn) бензолов с хорошей точностью выполняются корреляционные соотношения:
461_480-54.jpg
Для интенсивностей колебаний кольца производных бензола в области 1600 и 1585 см-1, характеризующих искажения p-электронной системы кольца, выполняется корреляционное соотношение:
(А-100)1/2= 132,7sc°, (14)
где А - интегральная интенсивность полосы поглощения в ИК спектре. Соотношения (13), (14) используют для вычисления констант заместителей sI, s°c, s°. Корреляционные соотношения в биохимии становятся важным ср-вом предсказания и целенаправленного поиска структурных модификаций, способствующих повышению биол. активности, в сериях соед. с систематич. варьируемыми структурными признаками. Важный параметр, связываемый с библ. активностью, - коэф. распределения Р в бинарной системе углеводород-вода. Значения Р определены для более чем 10000 соединений. Общая модель корреляционных соотношений типа "структура - активность" строится на изучении зависимостей (15)-(17). Скорость биол. ответа = B.C.k. (15) где С - кол-во введенного в организм препарата, В - фактор, характеризующий вероятность достижения препаратом рецептора за определенный промежуток времени, k - константа скорости или равновесия лимитирующей стадии р-ции, ведущей к контролируемому биол. ответу. Ур-ниe (15) сводится к корреляционному соотношению: lg(1/C)=a(lgP)2+b(lgP)+clgk+d, (16) где a, b, с, d - коэф., получаемые в результате статистич. обработки данных эксперимента. Для мн. биол. систем для констант k выполняется корреляционное соотношение:
lgk=ap+bv+cEs+d (17)
где p=lg(P/PH), Рн - коэф. распределения для соед. с заместителем Н. Ур-ния типа (15)-(17) - важные элементы системного анализа биол. активности орг. и прир. соединений.
===
Исп. литература для статьи «КОРРЕЛЯЦИОННЫЕ СООТНОШЕНИЯ»: Жданов Ю. А., Минкин В. И., Корреляционный анализ в органической химии. Ростов н/Д., 1966; Пальм В. А., Основы количественной теории органических реакций. Л., 1967; Джонсон К., Уравнения Гаммета, пер. с англ., М.. 1977; Advances in linear free energy relationships, ed. by N. B. Chapman. J. Shorter. N.Y.-L, 1972; Correlation analysis in chemistry. Recent advances, ed. by
N.B. Chapman, J. Shorter, N. Y.-L, 1978; Hansch C, Leo A., Substituent constants for correlation analysis in chemistry and biology, N. Y., 1979; Klumpp G. W., Reactivity in organic chemistry, N. Y., 1982. В.И. Mинкин.

Страница «КОРРЕЛЯЦИОННЫЕ СООТНОШЕНИЯ» подготовлена по материалам химической энциклопедии.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн