Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ФОТОХИМИЧЕСКИЕ РЕАКЦИИ

ФОТОХИМИЧЕСКИЕ РЕАКЦИИ, хим. р-ции, протекающие под действием света. Поглощение фотона с длиной волны ~ 100-1500 нм, чему соответствует энергия 0,8-12,4 эВ (80-1200 кДж/моль), вызывает квантовый переход молекулы в-ва из основного электронного состояния в одно из возбужденных состояний или фотоионизацию - отщепление электрона и образование катион-радикала. Возбужденные состояния молекул имеют отличную от основного состояния электронную структуру и, как правило, более высокую реакционную способность. Молекулы вступают в хим. р-ции, первичные продукты к-рых (ионы, радикалы, изомеры) чаще всего оказываются нестабильными. Конечные продукты фотохимических реакций появляются в результате обычных термич. р-ций, к-рые протекают либо непосредственно с участием первичных частиц, либо как ряд последовательных хим. превращений.

Как правило, для молекул с четным числом электронов при фотовозбуждении первоначально образуется возбужденное синглетное состояние (с мультиплетностъю, равной 1). Фотохимическая реакция обычно протекает из нижнего возбужденного синглетного состояния или из триплетного состояния (мультиплетность 3), к-рое получается из возбужденного синглетного состояния путем интеркомбинационной конверсии (изменения спина одного из электронов).

С хим. р-циями возбужденных молекул конкурируют фо-тофиз. процессы: испускание фотона (флуоресценция или фосфоресценция), внутренняя и интеркомбинационная конверсия в нижележащие электронные состояния (триплетное или основное). Вследствие этих процессов времена жизни возбужденных синглетных состояний обычно не превышают 10-8-10-9с. Триплетные состояния в жидких р-рах обычно "гибнут" в результате безызлучат. перехода и дезактивации (тушения) примесями (напр., кислородом); времена их жизни не превышают 10-5 с. В "жестких" средах (замороженных р-рах, полимерных матрицах), где процессы дезактивации замедляются, времена жизни триплетных состояний могут достигать десятка секунд.

Квантовый выход Ф первичного продукта фотохимической реакции, образующегося из к.-л. возбужденного состояния, равен отношению скорости этой фотохимической реакции к сумме скоростей всех фотофиз. и фотохим. процессов гибели этого возбужденною состояния. Поскольку такие процессы м. б. как мономолекулярными, так и бимолекулярными, сумму их скоростей выражают через сумму констант скорости ki,- мономолекулярных (для р-ций первого порядка) и псевдомономолекулярных (для р-ций второго порядка) процессов, при условии, что для бимолекулярных р-ций концентрация [X] реагента в осн. электронном состоянии гораздо больше концентрации возбужденных молекул. Если 5035-21.jpg- квантовый выход молекул в возбужденном состоянии (как правило, 5035-22.jpg= 1 для возбужденных синглетных состояний и 5035-23.jpg для триплетных состояний), кr - константа скорости рассматриваемой фотохимической реакции, то

5035-24.jpg

Суммарный выход конечного продукта равен произведению выходов всех продуктов в ряду последоват. хим. превращений, предшествующих образованию конечного продукта. В случае цепных р-ций выход конечного продукта может значительно (иногда на неск. порядков) превышать единицу.

Существует и др. определение квантового выхода - как отношение числа молекул, участвующих в фотохим. или фотофиз. процессе, к числу поглощенных фотонов. От квантового выхода следует отличать квантовую эффективность -отношение скорости процесса к скорости образования возбужденного состояния, из к-рого протекает данный процесс. Квантовый выход и квантовая эффективность равны для процессов, происходящих из синглетного возбужденного состояния.

Механизмы фотохимических реакций. Большинство фотохимических реакций протекает из терма-лизованных самых нижних возбужденных состояний соответствующей мультиплетности (правило Каши). Это обусловлено чрезвычайно высокой скоростью термализа-ц и и - установления термич. равновесия в результате перераспределения избыточной колебат. энергии между разл. степенями свободы возбужденных молекул и средой, а также высокой скоростью внутр. конверсии - переходов из высших возбужденных состояний в низшие возбужденные состояния той же мультиплетности, к-рая значительно превышает скорость большинства хим. р-ций и процессов испускания. Для таких фотохимических реакций квантовый выход не зависит от энергии поглощаемого фотона (длины волны возбуждающего света). Однако существуют также фотохимические реакции, протекающие из нерелаксированных (франк - кондоновских) возбужденных состояний, непосредственно образующихся при поглощении фотона. Таковы, напр., нек-рые р-ции диссоциации и изомеризации. При этом хим. р-ция конкурирует не с испусканием фотона или дезактивацией возбужденного состояния, а с его релаксацией в состояние, из к-рого возможен переход с флуоресценцией или фосфоресценцией. Квантовый выход таких р-ций не зависит от времени жизни флуоресцентного или фосфоресцентного состояния, но зависит от энергии возбуждения.

Существует два принципиально различных типа первичных р-ций фотовозбужденных молекул. При ад и а б а т и ч. фотохимических реакциях электронное возбуждение в элементарном хим. акте сохраняется, р-ция полностью протекает на поверхности потенциальной энергии (ППЭ) возбужденного электронного состояния и первичный продукт получается в возбужденном состоянии. При диабатич. первичных р-циях (иногда неправильно наз. неадиабатическими) электронное возбуждение в первичном хим. акте теряется, происходит переход с ППЭ возбужденного состояния на ППЭ основного состояния и первичный продукт сразу же получается невозбужденным. В нек-рых случаях и адиабатич. р-ции могут приводить к основному состоянию продукта, если ППЭ основного и возбужденного состояний в области координаты реакции, соответствующей первичному продукту, оказываются вырожденными (напр., при фотодиссоциации молекулы на атомы или радикалы).

Теория переходного состояния, на к-рой основано большинство используемых в химии концепций реакционной способности молекул в термич. р-циях (см. Активированного комплекса теория), применима строго лишь к адиабатич. фотохимическим реакциям. Диабатич. фотохимические реакции целесообразно рассматривать с позиций теории безызлучат. переходов, однако она пока недостаточно развита, особенно для сложных молекул. Наличие конкурирующих физ. процессов потери энергии электронного возбуждения, константы скорости к-рых даже для изолир. молекул очень велики и могут в ряде случаев достигать 1010 с-1 и более, осложняет механизм фотохимических реакций. Способность фотовозбужденных молекул к хим. взаимодействию определяется не столько значениями констант скорости соответствующих хим. р-ций, сколько соотношением скоростей р-ции и конкурирующих с ней физ. процессов деградации энергии электронного возбуждения. При взаимод. возбужденных молекул с к.-л. реагентами, помимо процессов потери энергии возбуждения, присущих самим возбужденным молекулам, возникают новые, часто еще более эффективные пути деградации энергии, обусловленные появлением дополнит. степеней свободы молекулы в реакционном комплексе и получившие назв. индуцированной дезактивации.

Для рассмотрения хим. активности возбужденных молекул привлекают как "статич." представления об электронной структуре (классификация мол. орбиталей, распределение электронной плотности, эффективные заряды на атомах и т.п.), так и "динамич." характеристики, т.е. изменения в элементарном хим. акте тех или иных параметров (сохранение орбитальной симметрии, мультиплетности, изменение энергии Гиббса, энергии локализации и др.).

Для фотохимических реакций наиб. перспективны динамич. подходы, поскольку они позволяют учитывать специфику конкретных процессов и в ряде случаев совместно рассматривать хим. превращение и конкурирующие с ним процессы деградации энергии возбуждения. Р-ции возбужденных молекул с этой точки зрения разделяют на разрешенные и запрещенные (по мультиплетности, орбитальной симметрии и др.). Напр., при нарушении орбитальной симметрии на пути р-ции возникает значит, потенциальный барьер, высота к-рого непосредственно не связана с энергетикой р-ции. Скорость таких фотохимических реакций может сильно изменяться даже при слабых изменениях структуры и симметрии молекул реагентов. Аналогично, для фотохимических реакций, связанных с изменением мультиплетности реагирующих частиц, весьма существенны факторы, влияющие на спиновые взаимод. (см. Спин-орбитальное взаимодействие, Спин-спиновое взаимодействие); эти факторы определяют вероятность интеркомбинационной конверсии, к ним относится, в частности, наличие в реагирующих молекулах или в среде тяжелых атомов парамагн. частиц, а также внеш. мага. поля.

Для адиабатич. фотохимических реакций и диабатич. фотохимических реакций, разрешенных правилами отбора (напр., для фотопереноса протона, фотопереноса электрона, отрыва атома H и др.), наблюдаются однотипные зависимости констант скорости от изменения энергии Гиббса в первичном фотохим. акте. Напр., для переноса электрона между возбужденной молекулой и донором электрона зависимость энергии Гиббса активации 5036-1.jpg от энергии Гиббса переноса электрона 5036-2.jpg описывается ур-нием:

5036-3.jpg

где 5036-4.jpg - эмпирич. параметр, соответствующий энергии активации изоэнергетич. р-ции (~ 20 кДж/моль). Для нахождения 5036-5.jpg р-ций возбужденных молекул используют цикл Фёрстера, согласно к-рому в случае адиабатич. р-ций энтальпия р-ции 5036-6.jpg в возбужденном состоянии меньше энтальпии р-ции 5036-7.jpg в основном состоянии на величину разности энергий возбуждения исходной молекулы E* и первичного продукта5036-8.jpg . Значения E* и E* ' легко определить из эксперим. спектральных данных или расчетом. Для диабатич. фотохимических реакций, где первичный продукт образуется непосредственно в основном состоянии, 5036-9.jpgE* ' опускают. В большинстве случаев полагают, что энтропии р-ций в основном и возбужденном состояниях примерно одинаковы и записывают аналогичное ур-ние для 5036-10.jpgG0*, к-рое позволяет вычислять константы равновесия и энергетику фотохимических реакций из возбужденных состояний.

При классификации фотохимических реакций, помимо общепринятых признаков - по типам разрываемых и образуемых связей, важное значение имеют механизмы разрыва и образования связей.

Основные типы фотохимических реакций. Фотодиссоциация- распад молекулы по к.-л. связи на радикалы, атомы или ионы, напр.:

5036-11.jpg

Фотодиссоциация происходит при отталкивательном (диссо-циативном) типе ППЭ возбужденных состояний молекул. В оптич. спектрах поглощения для переходов в "диссоциатив-ные" состояния характерны сплошные полосы. Фотодиссоциация типична для таких возбужденных состояний, в к-рых электрон находится на разрыхляющей s*-орбитали. Существуют р-ции, когда первичный продукт образуется в возбужденном состоянии [напр.,5036-12.jpg5036-13.jpg . В конденсир. средах первичные продукты фотодиссоциации оказываются в "клетке", образованной частицами р-рителя, и могут рекомбинировать с образованием исходных молекул (см. Клетки эффект), что приводит к существенному снижению квантового выхода по сравнению с фотохимическими реакциями в газовой фазе, где выход часто близок к единице. Фотодиссоциация - первичная стадия мн. р-ций замещения, стадия инициирования в цепных р-циях.

Предиссоциация - разновидность фотодиссоциации, при к-рой после поглощения фотона молекула первоначально оказывается в стабильном возбужденном состоянии, а из него переходит в диссоциативное возбужденное состояние, напр.:

5036-14.jpg

Фотодиссоциация может протекать гомолитически либо гетеролитически. Из р-ций гетеролитич. фотодиссоциации наиб. важны фотопротолитич. р-ции (связанные с гетеролитич. разрывом связи элемент - водород). Известны также многочисленные р-ции гетеролитич. фотодиссоциации по др. связям, в частности С — С, напр, в лейкооснованиях - триарилметановых и нек-рых др. красителях:5036-15.jpg5036-16.jpg . Нек-рые из таких фотохимических реакций могут протекать адиабатически с образованием возбужденных ионов красителей. Первоначально образующиеся карбкатионы могут взаи-мод. с нуклеофилами, приводя в конечном итоге к продуктам нуклеоф. замещения. Широко распространена гетеролитич. диссоциация в координационных соед., также приводящая в конце концов к замещению лигандов.

Распад (отщепление, фрагментация)- разложение на мол. фрагменты, сопровождающиеся перегруппировкой связей, напр.:

5036-17.jpg

Разрыв и перегруппировка связей обычно происходят синхронно при движении системы частиц по соответствующей сложной формы ППЭ возбужденного состояния. Такие р-ции подчиняются правилам отбора для согласованных р-ции (см. Вудворда - Хофмана правила). Правило сохранения орбитальной симметрии разрешает для возбужденных состояний, в отличие от основного состояния, р-ции, протекающие через четырехцентровые переходные состояния. Для таких р-ций характерно слабое влияние конденсир. фазы и присутствия добавок, в частности акцепторов радикалов, на квантовый выход.

Фотоизомеризация. В зависимости от характера изомеризации различают стереоизомеризацию, таутомерные превращения, перегруппировки. Широко распространены процессы цис-транс- и транс-цис-фотоизомеризации непредельных соед., напр. арилэтиленов и тиоиндиго:

5036-18.jpg

Эти фотохимические реакции обусловлены тем, что минимумы на ППЭ возбужденных состояний, в отличие от ППЭ основного состояния, часто соответствуют ортогональной, а не планарной конфигурации молекулы.

Практич. применение в качестве фотохромных систем находит фотоизомеризация opmo-нитроароматич. соед. и спи-ропиранов в мероцианины:

5036-19.jpg

Широко распространены фотоперегруппировки в ряду аро-матич. и циклич. непредельных соед., напр. бензола и его производных - в бензвален, фульвен, т. наз. дьюаровский бензол и призман:

5036-20.jpg

Окислительно-восстановит. фотохимические реакции. В основе большинства из них лежит фотоперенос электрона. Образующиеся в первичной стадии ион-радикалы вступают в дальнейшие превращения, давая продукты окисления или восстановления. Напр., при взаимод. дурохинона с донорами электрона (аминами, спиртами) под действием света первоначально образуются семихиноновые анион-радикалы, диспропорционирова-ние к-рых дает хинон и гидрохинон. Подобным образом происходит фотовосстановление красителей (акридиновых, оксазиновых, тиазиновых) до лейкоформ. Аналогично из ароматич. углеводородов RH в присут. доноров электрона D получаются анион-радикалы, к-рые в протонных р-рителях присоединяют протон и дают в конце концов продукты диспропорционирования, рекомбинации и т. п.:

5036-21.jpg

В координац. соед. часто наблюдается фотоперенос электрона между центр. ионом и лигандом, что приводит к образованию окисленной и восстановленной форм, напр.:

5036-22.jpg

Перенос электрона может происходить не только при взаимод. возбужденных молекул с донором или акцептором электрона, но и путем прямой фотоионизации молекул. Для фотоионизации требуется, чтобы энергия фотона превышала потенциал ионизации, что обычно существенно больше, чем для возбуждения молекулы. В конденсир. фазе энергия, необходимая для фотоионизации, понижается по сравнению с газовой фазой на 1-2 эВ вследствие поляризации среды образующимися ионами. При фотоионизации (напр., аминов в замороженных р-рах) оптич. и радиоспектроскопич. методами наблюдается образование их катион-радикалов. Электрон первоначально сольватируется р-рителем, а затем присоединяется к к.-л. акцептору, присутствующему в р-ре.

Фотовосстановление и фотоокисление могут протекать и не через стадии фотопереноса электрона. Так, фотовосстановление карбонильных, гетероциклич. и нитроароматич. соед. происходит путем отрыва 5036-23.jpg-возбужденными состояниями этих молекул атома H от р-рителя и дальнейших превращений образующихся радикалов, напр.:

5036-24.jpg

Фотоокисление кислородом часто протекает путем фото-сенсибилизир. превращения мол. кислорода, основное состояние к-рого является триплетным 5036-25.jpg , в синглетное 5036-26.jpg состояние. Синглетный кислород легко присоединяется по кратным связям и внедряется, напр., по связи C-H:

5036-27.jpg

Присоединениек возбужденным молекулам разл. реагентов характерно для многих ненасыщенных соед. Такие фотохимические реакции обычно протекают по синхронному механизму и подчиняются соответствующим правилам отбора (по мультиплет-ности, орбитальной симметрии и др.). Типичные примеры -образование цйклобутановых соед. (а), оксетанов (б), фото-димеризация (в), образование оксидов ароматич. соед. (г):

5036-28.jpg

Известны процессы фотоприсоединения, протекающие по радикальному (иногда цепному) механизму, напр.:

5036-29.jpg

Отрыв атомов (гомолитический) возбужденными молекулами от реагента (или р-рителя) характерен для возбужденных состояний, имеющих неспаренный электрон на несвязывающей орбитали (напр., для n, 5036-30.jpg-состояний карбонильных и гетероциклич. соед.):

5036-31.jpg

Первично образующиеся радикалы вступают во вторичные р-ции рекомбинации или диспропорционирования, что приводит к стабильным конечным продуктам (в данном примере пинаконам или спиртам - продуктам восстановления исходного кетона). Причиной такого хим. поведения возбужденных 5036-32.jpg -состояний является сходство их электронной структуры со структурой радикалов. Для радикальных р-ций типичны линейные зависимости логарифма константы скорости отрыва от энергии разрываемой связи.

Внутримол. р-ции отрыва атома водорода характерны для карбонильных соед. с достаточно длинными (более двух атомов углерода) заместителями:

5036-33.jpg

Промежут. бирадикал распадается на два непредельных фрагмента - олефин и енол, последний затем изомеризуется в кетон. Эта р-ция носит назв. р-ции Норриша типа П, в отличие от р-ции Норриша типа I, заключающейся в фотодиссоциации (предиссоциации) по связям, примыкающим к карбонильной группе:

5036-34.jpg

Образующийся в р-ции Норриша типа П промежут. бирадикал может не только распадаться, но и циклизоваться, приводя к образованию замещенного циклобутанола.

Широко распространены также р-ции присоединения протона к таким основаниям (напр., к акридину), у к-рых при переходе в возбужденное состояние значительно увеличивается основность:

5036-35.jpg

Лит. см. при ст. Фотохимия. М.Г. Кузьмин.



     © ХиМиК.ру




Реклама   Обратная связь   Дизайн