Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ФИЗИКО-ХИМИЧЕСКАЯ ГИДРОДИНАМИКА

ФИЗИКО-ХИМИЧЕСКАЯ ГИДРОДИНАМИКА, изучает механизм и количеств. закономерности процессов переноса в-ва, энергии и импульса через межфазную границу в гетерогенных системах, а также при хим. и фазовых превращениях на границе раздела фаз. Основными объектами исследования являются подвижные среды - жидкие, газообразные, псевдо-ожиженные - и их физико-хим. взаимодействия с ограничивающими твердыми стенками. Процессы переноса, изучаемые физико-химической гидродинамикой, протекают в газо-жидкостных хим. реакторах, ректификационных колоннах, абсорберах, скрубберах, отстойниках, кристаллизаторах, электролизерах и др., при сжигании топлива и теплообмене в энергетич. установках, при добыче и обогащении полезных ископаемых на предприятиях нефтяной, газовой и горноперерабатывающей пром-сти.

Первоначально физико-химическая гидродинамика изучала тепло- и массоперенос при конвективном движении среды, сопровождающий прохождение электрич. тока в р-рах электролитов, абсорбцию и экстракцию при движении капель, пузырьков газа, твердых частиц и тонких жидких пленок; исследовалось также влияние ПАВ на волновое движение и массоперенос на пов-сти жидкости и т. п. В подобных системах вблизи межфазной границы образуется гидродинамич. пограничный слой 5017-35.jpg скорость течения внутри к-рого постепенно меняется от скорости движения одной фазы (u1) до скорости движения др. фазы (u2). Толщина слоя 5017-36.jpgи картина течения внутри него помимо скоростей u1 и u2 зависят от вязкости и плотности движущихся фаз, типа течения и др. характеристик контактирующих сред. Напр., вблизи неподвижной твердой стенки, обтекаемой потоком жидкости, внутри пограничного слоя скорость жидкости постепенно нарастает от нуля у твердой стенки до скорости потока и. Если в жидкости содержится к.-л. активный компонент А, участвующий в гетерогенных превращениях или адсорбирующийся на твердой стенке, концентрация этого компонента меняется от значения CsA на стенке до C*A в потоке, что создает внутри жидкости диффузионный пограничный слой (толщина5017-37.jpg). Перенос компонента А в диффузионном слое 5017-38.jpg вблизи межфазной границы осуществляется путем конвективной диффузии в поле постепенно ускоряющейся жидкости. Расчет скорости массообмена в описанных условиях составляет одну из типичных задач физико-химической гидродинамики.

Физико-химическая гидродинамика заменила феноменологич. теории, использовавшиеся для описания конвективной диффузии и теплопереноса в физ.-хим. системах, из к-рых была наиб. распространена "пленочная" теория (модель Нернста), принимавшая существование вблизи твердой стенки слоя 5017-39.jpg неподвижной жидкости. Успехи физико-химической гидродинамики связаны в первую очередь с последоват. применением представлений и расчетного аппарата гидродинамики, а также методов теоретич. физики к случаям конвек-тивного тепло- и массопереноса.

Систему ур-ний физико-химической гидродинамики составляют ур-ния переноса в-ва, кол-ва движения и энергии, получаемые на основе баланса перечисленных величин внутри произвольно выбранного элементарного объема среды (см. также Массообмен, Переноса процессы, Теплообмен).

Задачи, решаемые физико-химической гидродинамикой, условно делят на внешние, внутренние и смешанные в зависимости от протяженности фазы, определяющей скорость процесса переноса, и толщины пограничного слоя вблизи межфазной границы, где происходит осн. изменение концентрации, т-ры или скорости движения среды. Напр., расчет массопереноса компонента А к одиночной капле, движущейся в потоке др. жидкости (экстракция), сводится к разл. задачам: если лимитирующей стадией является перенос компонента А в окружающем каплю потоке, говорят о внешней задаче. Напротив, если лимитирующей является конвективная диффузия внутри капли, а толщина слоя 5017-40.jpgм. б. соизмерима с радиусом капли r0, задача становится внутренней. Наконец, если скорости переноса А снаружи и внутри капли соизмеримы, расчет массопереноса приводит к смешанной задаче. Внеш. задачи характерны для конвективного тепло- и массопереноса в потоках, обтекающих одиночные твердые тела, капли, пузырьки газа или пара и т. п. Внутр. задачи возникают при расчете гидродинамич. сопротивления, тепло- и массопереноса внутри труб, каналов, пленок и т.д. Смешанные задачи типичны для процессов переноса в насадочных слоях, барбо-терах, фильтрах и пр., где существенно взаимное влияние элементов диспергированной фазы.

Для решения ур-ний конвективного переноса применяют стандартные методы мат. физики, спец. интегральные методы, методы теории размерностей и подобия. Последние особенно полезны для получения качеств. зависимостей, при масштабном переходе, разработаны численные методы (конечных разностей, граничных элементов и др.) и компьютерное моделирование.

Для получения количеств. соотношений, описывающих скорость процессов переноса вблизи межфазной границы, в физико-химической гидродинамике используют два подхода: 1) изучают т. наз. элементарный акт процесса, а затем проводят статистич. описание множества одновременно протекающих "элементарных актов" в макроскопич. системе; 2) вводят эффективные значения физико-хим. параметров системы, усредненных по всей макросистеме или по ее части, и решают ур-ния переноса для указанных эффективных параметров. При таком подходе оказывается необходимым ввести эффективные значения транспортных св-в среды (вязкости, коэф. диффузии и трения и др.). Выяснение связи эффективных значений с характеристиками и структурой среды составляет самостоят. задачу. Напр., при разработке аппаратуры для хим. реакторов и технол. процессов разделения (абсорбции, экстракции, ректификации и др.) широко используют результаты исследования переноса импульса и в-ва между потоком жидкости или газа и одиночными дисперсными включениями (твердыми, жидкими или газообразными). Напротив, при описании фильтрования, хим. превращений в насадочных и псевдоожижен-ных слоях, токообразования в пористых электродах и т. п. удобно применять эффективные значения скорости потока, гидравлич. сопротивления, вязкости, концентрации, электрич. потенциала и др. параметров.

Полученные в результате расчетов значения скорости мас-со(тепло)переноса, т. е. локальное 5017-41.jpg или среднее 5017-42.jpg значение коэф. массо(тепло)передачи на межфазной границе, обычно представляют в виде безразмерных величин - локального (Shx =5017-43.jpgc x/D)или среднего (Sh =5017-44.jpgl/D) значений числа Шервуда, где c и l соотв. текущее значение координаты на пов-сти и характерный линейный размер рассматриваемой системы, D - коэф. диффузии. В установившемся потоке вязкой жидкости величины Shx и Sh связаны с гидродинамич. параметрами потока (числом Рейнольдса Re) и транспортными св-ва-ми среды (числом Шмидта Sc или числом Прандтля Pr) зависимостью степенного вида. Напр., в случае конвективной диффузии к пов-сти вращающегося диска (одной из классич. задач физико-химической гидродинамики) указанная зависимость имеет вид Sh = 0,62Re0,5Sc0,33. При турбулентном режиме течения показатели степени меняются. Исследование зависимости Sh от Sc послужило важным методом изучения структуры турбулентного пограничного слоя и использовалось при расчете теплопередачи в жидкометаллич. теплоносителях. Представленная в виде безразмерных критериев скорость переноса удобна для сопоставления данных, полученных в разных условиях эксперимента. Критериальные зависимости используют при конструировании пром. аппаратов, при осуществлении масштабного перехода от лаб. к реальным установкам.

Физико-химическая гидродинамика изучает также нарушения устойчивости конвективного потока под влиянием тепло- и массопереноса, ускорение процессов обмена под влиянием вторичных- потоков, интенсивный тепло- и массообмен на межфазной границе, процессы переноса в системах, где происходит контакт трех фаз (напр., в газовых диффузионных электродах).

Лит.: Левич В. Г., Физико-химическая гидродинамика, 2 изд., M., 1959; Кафаров В.В., Основы массопередачи, 2 изд., M., 1972; Берд Р., Стью-арт В., Лайтфут E., Явления переноса, пер. с англ., M., 1974; Франк-Каменецкий Д. А., Диффузия и теплопередача в химической кинетике, 3 изд., M., 1987. В. Ю. Филиновский.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн