Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ТИТАНА СПЛАВЫ

ТИТАНА СПЛАВЫ, обладают высокой мех. прочностью при достаточной пластичности и вязкости, низкой теплопроводностью, небольшим коэф. линейного расширения, высокой коррозионной стойкостью в нек-рых хим. средах и морской воде, хорошо совместимы с живой тканью.

Слитки титана сплавов получают электродуговой плавкой электрода, состоящего из титановой губки (см. Титан) и легирующих элементов, в вакууме или аргоне; затем их перерабатывают в деформир. полуфабрикаты. Небольшую часть деталей получают фасонным литьем или методами порошковой металлургии. Большинство титана сплавов хорошо сваривается в вакууме или аргоне электродуговой и электроннолучевой сваркой, контактной и диффузионной сваркой, плохо обрабатывается резанием вследствие сильного налипания на инструмент.


4118-28.jpg

Титана сплавы существуют в разл. полиморфных состояниях. По соотношению кол-ва a-фазы с гексагон. кристаллич. решеткой и b-фазы с объемноцентрир. кубич. решеткой различают a-, псевдо-a-, (a + b)-, псевдо-b- и b-титана сплавы, а также сплавы на основе интерметаллидов (см. табл.). По влиянию на т-ру полиморфных превращений легирующие элементы титана сплавов подразделяют на a-стабилизаторы, повышающие т-ру полиморфного превращения, b-стабилизаторы, понижающие ее, и нейтральные упрочнители, мало влияющие на эту т-ру. К первым относят Al, In и Ga; ко вторым - эвтектоидо-образующие (Cr, Mn, Fe, Co, Ni, Cu, Si) и изоморфные (V, Nb, Та, Mo, W) элементы, к третьим-Zr, Hf, Sn, Ge. Вредные примеси в титана сплавах - элементы внедрения (С, N, О), снижающие их пластичность и технологичность, и Н, вызывающий водородную хрупкость сплавов.

Титана сплавы с a-структурой легируют Al, Sn и Zr. Они отличаются повыш. жаропрочностью, высокой термич. стабильностью, малой склонностью к хладноломкости, хорошей свариваемостью. Осн. вид термич. обработки-отжиг при 590-740 °С. Применяются для изготовления деталей, работающих при т-рах до 400-450 °С; сплав Ti высокой чистоты (5% А1 и 2,5% Sn)-один из лучших материалов для работы при криогенных т-рах (до 20 К).

Титана сплавы с псевдо-а-структурой легируют Аl, Мn, V, Zr, Nb, Sn, Fe, Cr, Si; содержат до 5% b-фазы. Отличаются высокой технологичностью (при содержании Аl < 3%), высокой жаропрочностью (Аl > 6%), высокой термич. стабильностью, хорошей свариваемостью; термически не упрочняются, осн. вид термич. обработки-отжиг при 590-740 °С. Низкоалюминиевые псевдо-a-сплавы предназначены в осн. для изготовления листов, лент, полос, труб, профилей. Листовую штамповку деталей простой формы производят в холодном состоянии, при штамповке деталей сложной формы необходим подогрев до 500 °С. Недостатки этих сплавов-сравнительно невысокая прочность и жаропрочность, большая склонность к водородной хрупкости. Применяются для изготовления сложных в технол. отношении деталей, работающих при т-ре до 350°С.

Комплексно легированные высокоалюминиезые псевдо-а-сплавы, содержащие 89,2% Ti, 6,3% Al, 2% Zr, 1% Mo, 1,5% V или 79,4% Ti, 7,7% Al, 11% Zr, 0,6% Mo, 1% Nb, 0,15% Fe, 0,1% Si, обладают высокой жаропрочностью; применяются для изготовления деталей, длительно работающих при 500-550 °С, напр. лопаток компрессоров авиационных двигателей. Псевдо-a-сплавы, легированные нейтральными упрочнителями (Zr) и b-стабилизаторамы (Мо) в кол-вах, близких к их предельной р-римости в a-фазе, сохраняют высокую пластичность и ударную вязкость при криогенных т-рах, вплоть до т-ры жидкого водорода.

Титана сплавы (a + b)-структуры легируют А1, V, Zr, Cr, Fe, Mo, Si, W; в отожженном состоянии они содержат 5-50% b-фазы. Отличаются наиб. благоприятным сочетанием мех. и тех-нол. св-в, высокой прочностью, способностью к термич. упрочнению в результате закалки и старения, удовлетворит. свариваемостью, меньшей склонностью к водородной хрупкости по сравнению с a- и псевдо-a-сплавами. Прочностные св-ва пром. (a + b)-сплавов в отожженном состоянии возрастают с увеличением содержания в них b-стабилизаторов. Увеличение содержания А1 в сплавах повышает их жаропрочность, снижает пластичность и технологичность при обработке давлением.

Наиб. распространен сплав Ti с 6% А1, 4% V, используемый в авиационной, ракетной и криогенной технике, судостроении, для изготовления хим. и металлургич. оборудования, в качестве протезов в хирургии и т.п. Сплав Ti с 2,6% А1, 5% Мо, 4,5% V-OCH. материал для крепежных деталей, работающих до 300 °С. Сплав Ti с 5,5% Аl,4,5% V, 2,0% Мо, 1,0% Сr и 0,6% Fe содержит в отожженном состоянии ок. 30% b-фазы, отличается высокой технол. пластичностью, хорошо сваривается; идет на изготовление сильнонагружаемых деталей и конструкций в авиационной технике.

Титана сплавы с псевдо-b-структурой, содержащий 5% Аl, 5% Мо, 5% V, 1% Сr и 1% Fe и имеющий после отжига (a + b)-структуру и b-структуру после закалки,-наиб. прочный сплав как в отожженном, так и термически упрочненном состоянии; применяется для изготовления сильнонагружаемых деталей и конструкций, длительно работающих до 350-400 °С. Псевдо-b-сплав с содержанием 11% Мо, 5,5% Zr и 4,5% Sn отличается высокой технол. пластичностью в закаленном состоянии и высокой прочностью после закалки и старения. Недостаток псевдо-b-сплавов-невысокая жаропрочность.

К титана сплавам с b-структурой относят сплав с содержанием 33% Мо, отличающийся высокой коррозионной стойкостью.

Интерметаллидные титана сплавы включают в себя сплавы на основе алюминидов (Ti3Al и TiAl) и никелидов титана (TiNi). Сплавы на основе Ti3Al и TiAl, отличающиеся большой жаропрочностью и малой плотностью, что обеспечивает их очень высокую уд. прочность при т-рах 700-900 °С,- перспективная альтернатива жаропрочным сплавам в авиационных двигателях; их недостаток-высокая хрупкость при нормальной и повышенных т-рах.

Сплавы на основе TiNi (нитинолы) обладают эффектом памяти формы, т.е. способностью восстанавливать геом. форму первонач. изделия или полуфабриката в результате обратного мартенситного превращения, вызванного нагревом. Особый интерес эти сплавы представляют для космич. техники.

Лит.: Глазунов С. Г., Моисеев В. Н., Конструкционные титановые сплавы, М., 1972; Солонина О. П., Глазунов С. Г., Жаропрочные титановые сплавы, М., 1976; Металлография титана, под ред. С. Г. Глазунова и Б. А. Колачева, М., 1980; Колачев Б. А., Ливанов В. А., Елагин В. И., Металловедение и термическая обработка цветных металлов и сплавов, М., 1981.

Б. А. Колачев.



     © ХиМиК.ру




Реклама   Обратная связь   Дизайн