ПЛАТИНОВЫЕ МЕТАЛЛЫ (платиноиды), семейство из 6 хим. элементов VIII гр. периодич. системы, включающее рутений (ат. н. 44), родий (45), палладий (46), осмий (76), иридий (77), платину (78). Вместе с Au и Ag составляют группу благородных металлов. Подразделяются на легкие (Ru-Pd) и тяжелые (Os-Pt).

Распространенность в природе и природные источники. Содержание платиновых металлов в земной коре (% по массе): Pt 5·10-7, Pd 1·10-6, Ir 1·10-7, Rh 1·10-7, Os 5·10-6, Ru 5·10-7 (по Виноградову). Руды платиновых металлов бывают коренные и россыпные, а по составу - собственно платиновые и комплексные (мн. коренные месторождения медных и медно-никелевых сульфидных руд, россыпные месторождения Au с Pt, а также Au с осмистым Ir). Известно более 100 минералов платиновых металлов, они бывают двух типов. В россыпях встречаются самородные Pd и Pt и разл. сплавы, в т.ч. с другими платиновыми металлами, Fe, реже-с Au (содержат также и др. металлы), капр. палладиевая платина, железистая платина (Pt, Fe), изоферроплатина Pt3Fe, плати-нистый палладий, осмистый иридий, иридиевая платина Pt4Ir2Fe, платинистый иридий Ir4Pt, осмистый иридий Ir2Os, ауроосмид (Ir, Os, Au) и др. Минералы второго типа-разл. соединения платиновых металлов с S, Fe, As, Bi, Pb, напр, спериллит PtAs2, куперит PtS, брэгтит (Pt, Pd, Ni)S, стибиопалладинит Pd3Sb, лаурит RuS2, холлингуореит (Rh, Pt, Pd, Ir)(AsS)2 и др. Минералы этого типа встречаются в виде твердых р-ров в медно-никелевых сульфидных рудах, являющихся осн. пром. источником платиновых металлов. На долю вторичных источников платиновых металлов (лом, отработанные катализаторы и др.) приходится от 10 до 33% ежегодного мирового произ-ва этих металлов. Нек-рые изотопы Pd, Ru и Rh накапливаются в продуктах деления U и Pu в ядерных реакторах.

ХАРАКТЕРИСТИКА ПЛАТИНОВЫХ МЕТАЛЛОВ

Показатель

Ru

Rh

Pd

Os

Ir

Pt

Конфигурация внеш. электронных оболочек атома







М0

4d75s1

4d85s1

4d10

5d66s2

5d76s2

5d96s1

Атомный и ионный радиусы*, нм







М0

0,134

0,1342

0,137

0,135

0,135

0,138

M4 +

0,076

0,074

0,076

0,077

0,077

0,077

T. пл., 0C

2334

1963

1554

3027

2447

1769

T. кип., 0C

4077

3727

2937

5027

~4380

-3800

Плотн., г/см3

12,45

12,41

12,02

22,61

22,65

21,45

С0p, Дж/(моль·К)

24,0

24,95

25,8

24,7

25,1

25,85

S0298, Дж/(моль·К)

28,56

31,48

37,65

32,6

35,54

41,6

3552-9.jpg , кДж/моль

38,3

21,53

16,7

31,8

26

20

3552-10.jpg , кДж/моль

647,4

495,3

353

747,4

667,8

510

* Ионные радиусы даны по Шеннону при координац. числе 6.

** DHпл и DHисп приведены при т-рах соотв. плавления и кипения.

Мировые прогнозные ресурсы платиновых металлов (без социалистич. стран) оцениваются в 75050 т (1985), в т.ч. в ЮАР 62000, США 9300, Зимбабве 3100, Канаде 500, Колумбии 150 т. В осн. это запасы Pt (65%) и Pd (30-32%).

Свойства. Платиновые металлы-светло-серые или серебристые тугоплавкие, труднолетучие металлы (см. табл.); Rh, Pd, Ir, Pt кристаллизуются в гранецентрир. кубич. решетке, Os и Ru- в гексагональной плотноупакованной. По мех. св-вам платиновые металлы заметно различаются: Pt-мягкая, пластичная, легко вытягивается в тончайшую проволоку и прокатывается в фольгу, почти так же пластичен Pd; Os и Ru-хрупкие, Ir-твердый и прочный.

Наиб. характерные степени окисления для палладия +2, платины +2 и +4, иридия +2 и +3, осмия +4, +6 и +8, родия +3, рутения +3, +4 и +8. Платиновые металлы обладают исключительно высокой каталитич. активностью, чаще других как катализаторы используют Pt и Pd. Палладий и в меньшей степени Pt хорошо растворяют H2, Pd растворяет H2 лучше всех металлов (до 800 объемов).

Платиновые металлы отличаются хим. инертностью, наиб. химически стойка Pt. Палладий раств. в горячих конц. HNO3 и H2SO4, Pt и Pd и в меньшей степени RU- в царской водке, Ru в присут. окислителей взаимод. с H2SO4 и HClO4, Rh медленно реагирует с конц. H2SO4, HBr, Pt медленно взаимод. с кипящей H2SO4 и горячей HNO3, медленно раств. в конц. HBr и HI. Все платиновые металлы раств. в царской водке после оглавления с KHSO4 или спекания с неорг. пероксидами. Платиновые металлы взаимод. при нагр. со щелочами в присут. O2. С O2 воздуха платиновые металлы образуют тончайшие оксидные пленки на пов-сти: Os при 500-6000C, Ru выше 4500C, Pt при 900-10000C, Ir и Rh ок. 2000 0C. Os может гореть на воздухе, a HNO3 окисляется до OsO4.

Известны сотни простых и тысячи комплексных соединений платиновых металлов. В р-рах существуют только комплексные ионы платиновых металлов. Устойчивость высоких степеней окисления платиновых металлов в комплексных соед. уменьшается в рядах Ru > Rh > Pd и Os > Ir > Pt. Платиновые металлы, особенно в низких степенях окисления, представляют собой мягкие льюисовские к-ты по Пирсону; в водных р-рах устойчивость галргенидных комплексов уменьшается в ряду F - <Cl - < Вг - <I -, а в случае многоатомных лигандов, в т.ч. органических,-в ряду донорных атомов О < N < S3552-11.jpgС. Одна из особенностей химии платиновых металлов-кинетич. инертность комплексов этих металлов в р-циях замещения лигандов в координац. сфере. Инертность комплексов в существ. степени зависит от степени окисления платиновых металлов и природы лиганда, но в целом уменьшается в ряду Ir > Rh > Pt > Ru > Os > Pd.

Получение. Способ извлечения и разделения платиновых металлов существенно зависит от типа исходного сырья. Переработка россыпей сводится к добыче песка и его обогащению гравитац. методами. Переработка медно-никелевых сульфидных руд обычно включает операции мех. и флотац. обогащения, пирометаллургич. переработки концентратов и гидрометаллургич. рафинирования (аффинаж).

При переработке медно-никелевых сульфидных руд платиновые металлы концентрируются в разл. полупродуктах произ-ва; большая часть, особенно Pd и Pt, концентрируется в анодных шламах (после электролитич. рафинирования Cu и Ni); из них получают концентраты платиновых металлов, к-рые направляют на аффинажные заводы. Схемы аффинажа платиновых металлов включают после-доват. операции обработки концентрата хим. реагентами. Напр., для выделения Pd и Pt концентраты платиновых металлов обрабатывают царской водкой. К фильтрату, содержащему Pt, Pd и Au, добавляют FeSO4 и осаждают Au. Из р-ра, содержащего Pd и Pt в виде [PtCl6]2- и [PdCl4]2-, добавлением NH4Cl осаждают (NH4)2[PtCl6], к-рый прокаливают до платиновой губки, затем повторяют растворение в царской водке, осаждение и прокаливание. Р-р, содержащий Pd, обрабатывают водным NH3 и соляной к-той, при этом осаждается Pd(NH3)2Cl2; переосаждение повторяют до получения чистого в-ва, к-рое прокаливают до палладиевой губки. Из оставшегося после обработки царской водкой концентрата, используя последоват. операции сплавления, растворения и осаждения, получают чистые (NH4)3[RhCl6], (NH4)3[RuCl6], (NH4)2[IrCl6], к-рые прокаливают в атмосфере H2 до Rh, Ru, Ir. В ряде схем аффинажа используют экстракц. методы. Высокочистые платиновые металлы получают методом зонной плавки, вытягиванием монокристаллов из расплава.

Определение. При анализе проб, содержащих от 10-8-10-7 до ~10% платиновых металлов, часто необходимо предварит. кон-центрирование и разделение платиновых металлов. Чаще всего для этого используются метод пробирной плавки (см. Пробирный анализ), сорбц. и экстракц. концентрирование. Метод пробирной плавки основан на высокотемпературном извлечении платиновых металлов расплавленными Pb, Ag, Cu, сплавами Pb с Ag, Cu с Ni, NiS.

При сорбц. методах концентрирования наиб. применение находят сорбенты с комплексообразующими группами. Для разделения платиновых металлов в виде заряженных комплексов с неорг. и орг. лигандами используют хроматографич. методы. Экстракц. методы основаны на избират. извлечении орг. р-рит о-лями из водных р-ров соединений платиновых металлов с экстрагентами. Для концентрирования Ru и Os используют избират. отгонку и экстракцию оксидов MO4.

Для анализа проб с низким содержанием платиновых металлов (горные породы, руды и продукты их переработки, технол. р-ры, морская вода и рассолы, речная вода, сбросные воды, реактивы) используют нейтронно-активац., атомно-эмиссионный, атомно-абсорбц., ренттенофлуоресцентный, спект-рофотометрич. методы анализа. Для сплавов, концентратов платиновых металлов, отработанных катализаторов, вторичного сырья платиновых металлов применяют рентгенофлуоресцентный, кулонометрич., атомно-абсорбц., гравиметрич. методы. Примеси благородных и неблагородных металлов в платиновых металлах определяют масс-спектро-метрич., атомно-эмиссионным и атомно-абсорбционными методами.

Применение. Платиновые металлы применяют в виде индивидуальных металлов и их сплавов друг с другом, а также с Au, Ag, Со, Cu и др. Сплавы платиновых металлов обладают большей твердостью, прочностью и устойчивостью к коррозии по сравнению с индивидуальными металлами. Осн. области применения платиновых металлов и их сплавов: катализаторы гидрирования, дегидрирования, окисления, дожигания выхлопных газов автомобилей, в топливных элементах; легирующие добавки в сплавах; материалы для высокотемпературных термопар, термометров сопротивления, электрич. печей сопротивления, химически стойкой посуды, электродов, электрич. контактов, мед. инструментов, стеклоплавильных аппаратов; осн. компонентов резистивных и конденсаторных материалов; тугоплавкие припои; компоненты постоянных магнитов (напр., сплав Pt-Co); защитные покрытия на металлах; ювелирная пром-сть.

История открытия платиновых металлов началась в сер. 18 в., когда испанцы в Южной Америке обнаружили, что при промывке песка вместе с золотом отмывались тяжелые серебристые песчинки, к-рых иногда было больше золота. Такой "песок" загрязнял золото, т. к. по внеш. виду он напоминал серебро и в то же время был полностью "бесполезен", его уничижительно назвали серебришком (plata - по-испански серебро). Однако послед. исследование образцов "тяжелого песка" позволило выделить пять новых элементов. На рубеже 18 и 19 вв. в Великобритании (У. Волластон, С. Теннант), России (А. А. Мусин-Пушкин) и Франции (Л. Воклен, А. Фуркруа) разработаны методы получения ковкой платины, в 1803 Волластон получил Pd, в 1804 он же выделил Rh, а Теннант -Ir и Os. Значительно позднее, в 1844, после четырех лет исследований уральской руды профессор Казанского университета К. К. Клаус выделил новый металл, к-рый он назвал рутением в честь России (ср.-век. лат. Ruthenia-Россия).

Лит.: Аналитическая химия платиновых металлов, M., 1972; Ливинг-стон С., Химия рутения, родия, палладия, осмия, иридия, платины, пер. с англ., M., 1978; Пробоотбирание и анализ благородных металлов. Справочник, 2 изд., M., 1978; Платина, ее сплавы и композиционные материалы, M., 1980; Юделевич И. Г., Старцевa E. А., Атомно-абсорбционное определение благородных металлов, Новосиб., 1981; Благородные металлы. Справочник, M., 1984; Металлургия благородных металлов, 2 изд., M., 1987; Griffith W. R., The chemistry of the rares platinum metals (Os, Ru, Ir and Rh), ed. by A. Cotton, G. Wilkinson, L., 1967. O. M. Петрухин.