Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ДИАЗОСОЕДИНEНИЯ

ДИАЗОСОЕДИНEНИЯ, содержат группировку N2, связанную с одним орг. остатком. Св-ва алифатич. и ароматич. диазосоединений различаются очень резко.
Ароматические диазосоединения ArN2X (Х - остаток к-ты). Связь между ArN2 и X в зависимости от природы последнего м. б. ионной (такие диазосоединения наз. солями диазония, напр. 021_040-64.jpg - бензолдиазонийхлорид) или ковалентной, как в соед. ArN=N—X (напр., C6H5N=N—ОН - бензолдиазогидроксид, C6H5N=N—CN - бензолдиазоцианид); соед. ArN—N—ОМ (М - металл) наз. диазотатами металлов. Ковалентные диазосоединения в р-рах диссоциируют с образованием катиона диазония 021_040-65.jpg и аниона Х- или превращаются в форму, способную к такой диссоциации (см. ниже). Диазосоединения могут не содержать X, когда Аr имеет отрицат. заряд, как, напр., в случае диазофенолятов (хинондиазидов)
021_040-66.jpg
или внутренних солей типа021_040-67.jpg Наиб. важны в практич. отношении соли диазония. Из-за низкой термич. стабильности их обычно используют сразу после получения, не выделяя из р-ров. Твердые соли диазония, у к-рых Х - остаток минер. к-ты (напр., HSO4-, NO3-, Сl-, СlO4-), неустойчивы и часто взрываются. Соли с анионами комплексных к-т (ZnCl3- и BF4-), а также с ArSO3-сравнительно устойчивы. Катион диазония 021_040-68.jpg относительно устойчив благодаря сопряжению между ядром и диазониевой группой; последняя оказывает более сильное электроноакцепторное влияние на ароматич. кольцо, чем две нитрогруппы. Два атома N в катионе бензолдиазония линейно расположены в плоскости кольца; расстояние между ними 0,1094 нм. В ИК спектре частота валентного колебания диазониевой группы ионных диазосоединений nN2 в области 2100-2300 см-1 (у ковалентных диазосоединений поглощение отсутствует). В электронном спектре имеются две полосы переноса заряда: 263 нм (lgeA 3,19) и 297 нм (lg el 2,97). Электронодонорные заместители в орто- и пара-положениях бензольного кольца оказывают батохромное влияние на спектральные характеристики (см. Цветность органических соединений) и повышают термостабильность катиона. Важнейшие р-ции диазосоединений, в к-рых не затрагивается диазогруппа, - азосочетание (из всех форм диазосоединений катион диазония -единств. электронодефицитная частица, к-рая может вступать в эту р-цию), образование диазоаминосоединений, превращения в водных средах разл. кислотности, приводящие к изменению их строения и св-в (схема приведена ниже):
021_040-69.jpg
При взаимод. катиона диазония (I) с ОН- образуется цис-диазогидроксид (II) - амфотерное соед., диссоциирующее с образованием циc-диазотата (III). Константа кислотности I ниже, чем II, поэтому равновесная концентрация последнее мала. Равновесие между I и III устанавливается за несколько мс. Щелочная соль цис-диазотата в твердом виде крайне неустойчива. В щелочном р-ре при нагр. циc-диазотат превращается в транс-форму (IV), щелочные соли к-рой стабильны; они бесцветны или окрашены в желтый цвет Обратному переходу IV в III способствует УФ облучение. При подкислении бифункциональный анион IV превращается в транс-диазогидроксид (V) или N-нитрозамин (VI), к-рые далее переходят в катион I. Из транс-диазотата (IV) катион диазония I образуется относительно медленно, т.к. они не находятся в состоянии простого протолитич. равновесия. Наличие в нейтральных и слабокислых средах N-нитрозамина способствует частичному дедиазотированию и образованию амина ArNH2. Если X = SO23- или CN-, то образуются ковалентные цис- и транс-диазосульфонаты Аr—N=N—SO3Na либо диазоцианиды Ar—N=N—CN. Однако эти транс-изомеры, в отличие от транс-диазогидроксида (V), в темновых условиях в катион I не переходят, а поэтому и не способны к азосочетанию. Диазониевая группа сильно активирует нуклеоф. замещение; так, в 2,4-динитробензолдиазонии в нейтральной среде одна из NO2-групп, преим. в положении 2, обменивается на группу ОН. К р-циям, идущим с превращением диазогруппы, относится замена ее основанием при нагр. диазосоединений в разб. H2SO4 (типичная р-ция SN1: 021_040-70.jpg ). При недостаточной кислотности среды образуются т. н. диазосмолы, что часто является причиной низкого выхода и плохого качества фенолов и азокрасителей, получаемых в соответствующих произ-вах. Аналогично, по гетеролитич. механизму в водном р-ре спирта диазогруппа замещается на алкокси-группу RO. При восстановлении диазосоединений абс. спиртом выделяется N2 и образуется неустойчивый арильный радикал, отрывающий Н от спирта. Восстановителями могут служить также Н3РО3, гидрохинон и др. Арильные радикалы, образующиеся при электрохим. восстановлении солей диазония, а также при восстановлении порошкообразной Сu, частично рекомбинируют с образованием симметричных биарилов, увеличению выхода к-рых способствует наличие oртo-заместителей (см. Гаттермана синтез). Соли диазония в присут. солей Cu(I) и нек-рых др. металлов легко замещают диазо-группу атомом галогена, а также группами CN, NCS, NO2, HS, RS, SO2H и др. (см. Зандмейера реакция). По свободно-радикальному механизму под действием водного р-ра щелочи разлагаются также ковалентные диазосоединения, напр., диазогидроксид; в присут. ароматич. углеводорода в результате арилирования последнего образуются несимметричные углеводороды (р-ция Гомберга). В кислых средах при действии SnCl2 соли диазония восстанавливаются в арилгидразины: 021_040-71.jpg . Под действием света соли диазония разлагаются, причем особенно легко, если в орто-и пара-положениях находятся сильные электронодонорные заместители; в результате фотолиза выделяется N2, происходит сужение кольца и образуются высокомол. соединения. В пром-сти соли диазония получают диазотированием ароматич. аминов. Диазосоединения можно синтезировать также действием на фенол HNO2, взятой в избытке (промежуточно образуется нитрозофенол):

С6Н5ОН + 4HNO2 : -ОС6Н4N2+ + 2HNO3 + 2Н2О

Диазотаты образуются по р-ции N-нитрозоациларилидов в щелочной среде:

ArN(NO)COCH3 + 2КОН : ArN2OK + СН3СООК + Н2О

В основе большинства методов определения диазосоединений лежит азосочетание. Если диазосоединение находится в форме транс-диазотата, его предварительно нужно действием к-ты перевести в активную диазониевую форму. Ионные и ковалентные диазосоединения различают по наличию у первых в ИК спектре частоты валентного колебания связи N=N. В пром-сти для определения диазосоединений используют автоматизир. контроль, основанный на электрохим. измерениях. Ароматич. диазосоединения применяют преим. для получения азокрасителей, а также как светочувствит. материалы для изготовления фоторезистов и в диазотипии (см. Репрография): в пром. орг. синтезе - для получения ценных промежуточных продуктов. Ароматич. диазосоединения открыты П. Гриссом в 1858.
Алифатические диазосоединения (диазоалканы) RR'CN2 (R,R' = Н, Alk). Эти соед. окрашены в цвета от желтого до пурпурно-красного, ядовиты. Низшие - взрывоопасные газы, высшие - жидкие или твердые в-ва, более устойчивы. Алифатич. диазосоединения стабилизируются в форме илида:
021_040-72.jpg
Длина связи N-N в диазометане 0,113 нм, что ближе к длине тройной, чем двойной связи. Частота валентного колебания nN лежит в области 2000-2200 см-1. Диазоалканы способны присоединять протон и к-ты Льюиса, давая соли диазония, к-рые легко разлагаются с выделением N2 и образованием продуктов превращения алкильного катиона. Вступая в р-цию 1,3-биполярного присоединения с алкенами, диазоалканы дают производные пиразолина, при фотолизе из алифатич. диазосоединений образуются карбены. Получают диазоалканы след. методами: 1) щелочной обработкой ацил-, карбамоил- или тозил-N-нитрозаминов (см. Диазометан), а также N-тозилгидразонов, напр.:
021_040-73.jpg
2) окислением гидразонов:
021_040-74.jpg
3) обработкой оксимов хлорамином или О-сульфонилгидроксиламином (HO3SONH2):
021_040-75.jpg
4) действием HNO2 на a-аминоэфиры:
021_040-76.jpg
Диазоалканы - алкилирующие агенты.
===
Исп. литература для статьи «ДИАЗОСОЕДИНEНИЯ»: Цоллингер Г., Химия азокрасителей, пер. с нем., Л., I960; Динабург М.С., Светочувствительные диазосоединения и их применение, М.-Л., 1964; Казицына Л. А., в кн.: Проблемы органической химии, М., 1970, с. 86-102; Студзинский О. П., Коробицына И. К., "Успехи химии", 1970, т. 39, в. 10, с. 17S4-72; Тишлер М., Становиик Б., "Химия гетероциклических соединений", 1980, № 5, с. 579-603; Saunders K. H., Alien L. M., Aromatic diazo- compounds, 3 ed., Bait, 1985. И. Л. Багал.

Страница «ДИАЗОСОЕДИНEНИЯ» подготовлена по материалам химической энциклопедии.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн