Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


Витамин В2

Витамин В2 (рибофлавин) впервые был выделен из молока и ряда других пищевых продуктов. В зависимости от источника получения витамин В2 называли по-разному, хотя по существу это было одно и то же соединение: лактофлавин (из молока), гепатофлавин (из печени), овофлавин (из белка яиц), вердофлавин (из растений). Химический синтез витамина В2 был осуществлен в 1935 г. Р. Куном. Растворы витамина В2 имеют оранжево-желтую окраску и характеризуются желто-зеленой флюоресценцией.

В основе молекулы рибофлавина лежит гетероциклическое соединение изоаллоксазин (сочетание бензольного, пиразинового и пиримидинового колец), к которому в положении 9 присоединен пятиатомный спирт рибитол. Химическое название «рибофлавин» отражает наличие рибитола и желтой окраски препарата , рациональное название его 6,7-диметил-9-D-рибитилизоаллоксазин.

Рибофлавин

Рибофлавин хорошо растворим в воде, устойчив в кислых растворах, но легко разрушается в нейтральных и щелочных растворах. Он весьма чувствителен к видимому и УФ-излучению и сравнительно легко подвергается обратимому восстановлению, присоединяя водород по месту двойных связей и превращаясь в бесцветную лейкоформу. Это свойство рибофлавина легко окисляться и восстанавливаться лежит в основе его биологического действия в клеточном метаболизме.

Клинические проявления недостаточности рибофлавина лучше всего изучены на экспериментальных животных. Помимо остановки роста, выпадения волос (алопеция), характерных для большинства авитаминозов, специфичными для авитаминоза В2 являются воспалительные процессы слизистой оболочки языка (глоссит), губ, особенно у углов рта, эпителия кожи и др. Наиболее характерны кератиты, воспалительные процессы и усиленная васкуляризация роговой оболочки, катаракта (помутнение хрусталика). При авитаминозе В2 у людей развиваются общая мышечная слабость и слабость сердечной мышцы.

Согласно данным К. Яги, существует прямая связь между степенью недостаточности рибофлавина у животных и накоплением в крови продуктов перекисного окисления липидов (ПОЛ), развитием атеросклероза и катаракты. Эти нарушения, по мнению автора, указывают на важную роль флавопротеинов в молекулярных механизмах синтеза и распада продуктов ПОЛ.

Биологическая роль. Рибофлавин входит в состав флавиновых коферментов, в частности ФМН и ФАД , являющихся в свою очередь просте-тическими группами ферментов ряда других сложных белков – флаво-протеинов. Некоторые флавопротеины в дополнение к ФМН или ФАД содержат еще прочно связанные неорганические ионы, в частности железо или молибден, наделенные способностью катализировать транспорт электронов. Различают 2 типа химических реакций, катализируемых этими ферментами. К первому относятся реакции, в которых фермент осуществляет прямое окисление с участием кислорода, т.е. дегидрирование (отщепление электронов и протонов) исходного субстрата или промежуточного метаболита. К ферментам этой группы относятся оксидазы L- и D-аминокислот, глициноксидаза, альдегидоксидаза, ксантиноксидаза и др. Вторая группа реакций, катализируемых флавопротеинами, характеризуется переносом электронов и протонов не от исходного субстрата, а от восстановленных пиридиновых коферментов. Ферменты этой группы играют главную роль в биологическом окислении. В каталитическом цикле изоаллоксазиновый остаток ФАД или ФМН подвергается обратимому восстановлению с присоединением электронов и атомов водорода к N1 и N10. ФМН и ФАД прочно связываются с белковым компонентом, иногда даже ковалентно, как, например, в молекуле сукцинатдегидрогеназы.

ФМН синтезируется в организме животных из свободного рибофлавина и АТФ при участии специфического фермента рибофлавинкиназы:

Синтез ФМН в организме животных из свободного рибофлавина и АТФ при участии специфического фермента рибофлавинкиназы

Образование ФАД в тканях также протекает при участии специфического АТФ-зависимого фермента ФМН-аденилилтрансферазы. Исходным веществом для синтеза является ФМН:

Образование ФАД в тканях протекает при участии специфического АТФ-зависимого фермента ФМН-аденилилтрансферазы

Распространение в природе и суточная потребность. Рибофлавин достаточно широко распространен в природе. Он содержится почти во всех животных тканях и растениях; сравнительно высокие концентрации его обнаружены в дрожжах. Из пищевых продуктов рибофлавином богаты хлеб (из муки грубого помола), семена злаков, яйца, молоко, мясо, свежие овощи и др.; в молоке он содержится в свободном состоянии, а в печени и почках животных прочно связан с белками в составе ФАД и ФМН. Из организма человека и животных рибофлавин выделяется с мочой в свободном виде. Суточная потребность взрослого человека в рибофлавине составляет 1,7 мг, в пожилом возрасте и при тяжелой физической работе эта потребность возрастает.

Предыдущая страница | Следующая страница

СОДЕРЖАНИЕ


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн