Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ГАЛЬВАНОТЕХНИКА

ГАЛЬВАНОТЕХНИКА, получение на пов-сти изделия или основы (формы) слоев металлов из р-ров их солей под действием постоянного электрич. тока. Различают: 1) гальваностегию-нанесение на пов-сть изделия тонких, обычно до неск. десятков мкм, металлич. покрытий и 2) гальванопластику - осаждение толстых, часто достигающих неск. мм, легко отделяющихся от основы (формы) слоев металла, точно воспроизводящих рельеф основы. При прохождении тока через р-р соли положит. ионы металла, образующиеся на аноде, присоединяя электроны, образуют на катоде нейтральные атомы, металл кристаллизуется и покрывает катод сплошным слоем (см. Электрокристаллизация). Разряду ионов предшествует их миграция и диффузия в р-ре. Катодом служит покрываемое изделие или основа, анодом -обычно тот же металл, к-рый выделяется на катоде. Если применяют нерастворимые аноды, в электролит периодически добавляют соединения осаждаемого металла; при этом вместо анодного растворения происходят др. анодные р-ции, напр. выделение О2. Эффективное ср-во регулирования св-в покрытия - введение в электролит орг. добавок, к-рые, адсорбируясь на пов-сти осаждаемого металла, меняют условия его кристаллизации. Мн. металлы выделяются на катоде совместно с Н2, к-рый понижает выход металла по току и изменяет св-ва покрытий. Скорость выделения Н2 обычно регулируют добавлением в электролит буферирующих неорг. соединений. Для повышения электропроводности р-ров в них дополнительно вводят неорг. соли.

Гальваностегия. Используется для повышения коррозионной стойкости и износостойкости изделия, улучшения отражат. способности его пов-сти, повышения электрич. проводимости и магн. характеристик, облегчения пайки, а также для декоративной отделки. наиб. распространенные процессы - цинкование, никелирование, меднение, хромирование, кадмирование и оловянирование (см. табл.).

Цинкование применяют в осн. для защиты изделий из черных металлов (стали и чугуна) от атмосферной и высокотемпературной газовой коррозии. Стандартный электродный потенциал Zn более отрицателен, чем Fe, и в контакте с последним (при наличии влаги) Zn анодно растворяется, тем самым защищая Fe. Толщина покрытия - от 0,005 до 0,5 мм. Используют кислые электролиты (сульфатные, хлоридные, фтороборатные) и щелочные (цианидные, цинкатные, пирофосфатные, аммиакатные). В кислых электролитах с рН 3-5 покрывают изделия несложной формы, в т.ч. проволоку и ленту. Слабокислые (рН 5-6) электролиты на основе хлоридов или сульфатов Zn, содержащие орг. добавки, обеспечивают более высокую скорость осаждения покрытий с повыш. светорассеиваю-щей способностью. Цианидные электролиты дают возможность получать блестящие мелкокристаллич. покрытия на изделиях сложной формы, осн. недостаток этих р-ров - высокая токсичность. Лишены этого недостатка цинкатные электролиты, осн. компоненты к-рых - Na2Zn(OH)4 или K2Zn(OH)4 и свободный NaOH или КОН; добавление к ним нек-рых орг. соед. обеспечивает осаждение блестящих покрытий при большой скорости процесса.

НАИБОЛЕЕ РАСПРОСТРАНЕННЫЕ СОСТАВЫ ЭЛЕКТРОЛИТОВ И РЕЖИМЫ ЭЛЕКТРООСАЖДЕНИЯ
Составы электролитов

Никелирование применяют для защиты от коррозии изделий из стали и цветных металлов (меди и ее сплавов), декоративной отделки их пов-сти и придания нек-рых других св-в. Никелевые покрытия по отношению к железу являются катодными и могут служить защитными только при условии отсутствия в них пор. Поэтому сталь покрывают сначала слоем Си (25-35 мкм), а затем Ni (10-15 мкм). наиб. широко применяют сульфатно-хлоридные электролиты, в меньшей степени - сульфаматные, фтороборатные, цитратные и др. Из электролитов с добавками производных бутиндиола осаждаются мелкозернистые, эластичные, ровные и блестящие покрытия. Осн. недостаток покрытий: малая коррозионная стойкость, обусловленная включениями серы. Избежать этого можно нанесением двух- или трехслойных покрытий; при одинаковой общей толщине трехслойное покрытие примерно в 1,5-2 раза более коррозионностойко, чем двухслойное, и в 3-4 раза - чем однослойное. При трехслойном никелировании первый слой осаждают из электролита с выравнивающей добавкой, не содержащей серы. Второй слой (1-2 мкм) содержит 0,1-0,2% S, третий, блестящий, - ок. 0,05% S. При контакте с агрессивной средой в порах покрытия растворяется наименее коррозионностойкий второй слой.

Повыш. стойкостью отличаются также композиционные блестящие никелевые покрытия, содержащие мелкодисперсные диэлектрич. частицы - каолин, карбиды, SiO2 и др. Осажденный на такое покрытие слой Сг приобретает микропористую структуру, к-рая снижает интенсивность коррозии Ni. Для декоративных целей разработано серебристо-матовое (велюровое) никелирование.

Меднение применяют перед осаждением никелевых и нек-рых др. покрытий на сталь, цинк, цинковые и алюминиевые сплавы, а также для защиты стальных изделий от цементации. Используют кислые (сульфатные, фтороборатные, нитратные) и щелочные (цианидные, пирофосфатные, этилендиаминовые) электролиты. наиб. распространенный сульфатный электролит устойчив и позволяет осаждать Си со 100%-ным выходом по току. Недостаток кислых электролитов - получение из них покрытий с низкой рассеивающей способностью. Перед нанесением блестящих никелевых покрытий осаждают слой блестящей меди из сульфатного электролита с добавкой орг. в-в, к-рые обеспечивают выравнивание и зеркальный блеск медного покрытия. Повышение рассеивающей способности достигается уменьшением в сульфатных электролитах концентрации CuSO4 и увеличением концентрации H2SO4. Такие электролиты, содержащие также орг. добавки, применяют, напр., для меднения печатных плат. Щелочные электролиты, в отличие от кислых, дают возможность осаждать Си на сталь, цинковые и др. сплавы с менее электроположительным, чем у Си, стандартным потенциалом, т.к. образующиеся в р-рах комплексные соли Си сдвигают ее потенциал к более отрицат. значениям. Покрытия, осаждаемые из цианидных р-ров, отличаются мелкозернистой структурой; они более равномерным слоем, чем покрытия из щелочных электролитов, покрывают пов-сть изделия. Однако цианидные электролиты токсичны и неустойчивы по составу.

Хромирование обеспечивает нанесение покрытий, отличающихся большой твердостью, износоустойчивостью, жаростойкостью, высокой отражат. способностью, быстрой пассивацией, обусловливающей значит. коррозионную стойкость. Защитно-декоративные покрытия с зеркальным блеском осаждают слоем толщиной 0,25-0,5 мкм на детали, предварительно покрытые Си (20-40 мкм) и Ni (10-15 мкм). Блестящие покрытия повышают срок службы медицинских и др. режущих инструментов; с их помощью восстанавливают размеры деталей, повышают их поверхностную твердость и износостойкость. Покрытия большой толщины (до сотен мкм), т. наз. твердый хром, осаждают непосредственно на изделия без промежут. подслоя. Они применяются для восстановления изношенных частей моторов и др. механизмов, уменьшения износа пов-стей деталей машин. Повышению защитных св-в блестящих покрытий способствует применение двойного пористого хромирования (дуплекс). Сначала осаждается слой блестящего, без трещин, Сr, к-рый заполняет все микроуглубления пов-сти; затем наносится более тонкий слой блестящего Сг с густой сеткой микротрещин. Общая толщина -1,25-2,5 мкм. Микропористые покрытия состоят из одного слоя Сr толщиной 0,3 мкм, к-рый осаждают на композиц. никелевые покрытия. Микротрещины и микропоры понижают плотность локальных токов коррозии и повышают коррозионную стойкость комбиниров. покрытий.

Осн. компоненты электролита-СrO3 и H2SO4. Из таких электролитов Сr осаждается с выходом по току 12-20%, остальная часть тока расходуется на восстановление Сг6+ до Сг3+ и выделение Н2. Для поддержания необходимой концентрации анионов SO42- и SiF62- в электролит добавляют малорастворимые соли-SrSО4 и K2SiF6. Такие электролиты более стабильны по составу, обеспечивают по-выш. выход по току и лучшую рассеивающую способность. Высоким выходом по току (до 40%) отличаются электролиты с добавкой NaOH, наз. тетрахроматными. Они содержат также Ti, Zr и нек-рые др. металлы.

Для защитно-декоративных целей применяют также покрытия "черным хромом", обладающие более высокой коррозионной и износостойкостью, чем обычные блестящие. Черный хром уменьшает отражение света пов-стью на 90%. Для черного хромирования используют р-ры хромовой к-ты с добавками уксусной к-ты, оксалата железа, ванадата аммония и др.

Кадмирование применяют для защиты изделий от коррозии в атмосфере или в средах, содержащих хлориды (напр., в морской воде). Используют кислые и щелочные электролиты. Применение спец. добавок позволяет получать мелкокристаллич. блестящие покрытия.

Оловянирование применяют для защиты изделий от коррозии в орг. к-тах, содержащихся в пищ. продуктах; значит. кол-во Sn расходуется на лужение консервной жести. Покрытия улучшают электрич. проводимость и облегчают пайку контактов. Оловянирование производят в кислых (сульфатных, фтороборатных), а также щелочных (станнатных, пирофосфатных и др.) электролитах. Наиб. распространены сульфатные электролиты с добавками ПАВ; из них осаждают мелкокристаллич. блестящие оловянные покрытия.

Золочение обеспечивает высокие хим. стойкость и электрич. проводимость, а также декоративные св-ва покрытий. Золотом покрывают электрич. контакты, лаб. приборы, ювелирные изделия, музыкальные инструменты, спец. прожекторы и др. изделия. Осн. компонент электролитов золочения-дицианоаурат калия. Для техн. целей применяют слабокислые, нейтральные и щелочные электролиты, из к-рых осаждаются покрытия высокой чистоты (99,99% Аu). Для декоративной отделки изделий осаждают блестящие покрытия из электролитов, содержащих неорг. и орг. добавки.

Серебрение широко применяют в радиопромышленности, радиоэлектронике, произ-ве средств связи и ЭВМ для обеспечения высокой электрич. проводимости контактов. Высокая отражат. способность серебра используется при покрытии фар, прожекторов, а его хим. стойкость в щелочных р-рах и орг. к-тах - при защите хим. аппаратуры и приборов. Недостаток покрытий: чувствительность к соед. серы, под влиянием к-рых возникает пленка сульфида серебра, снижающая декоративные св-ва покрытия. Разновидность наиб. распространенных цианидных электролитов серебрения - гексацианоферратный (железистосинеродистый), к-рый менее токсичен, т.к. в нем отсутствует свободный KCN.

Покрытия металлами платиновой группы (Pt, Pd, Rh) применяют в радиотехн. и электронной пром-сти при изготовлении электрич. контактов, для защиты пов-сти серебра от потускнения и деталей точной аппаратуры от коррозии. Платиновые покрытия, в частности, применяют в хим. пром-сти для получения титанплатиновых анодов.

Практич. применение находят также покрытия Fe, Co, Pb, As, Sb, Bi, Ga, In, Ge, Mn и др. металлами, осаждаемыми из водных р-ров. Для алюминирования используют орг. р-рители.

Покрытия металлич. сплавами, содержащими два, реже три компонента, применяют для экономии одного из металлов или улучшения св-в покрытия. Получены покрытия из сплавов большинства металлов, к-рые м. б. выделены из водных р-ров, а также сплавов, содержащих W, Mo, P, S и нек-рые др. элементы, в чистом виде из водных р-ров не выделяющиеся.

Гальванопластика. Используется для изготовления и размножения металлич. копий. Осн. ее преимущество перед др. методами - высокая точность воспроизведения микро-и макрогеом. рельефа. Этим методом изготовляют матрицы для грампластинок, печатные стереотипы, клише, валки для тиснения кож, тонкие металлич. сетки, фольгу, копии с произведений искусства и др. Разновидность гальванопластики, электролитическое формование,-изготовление объемных деталей. Этим способом производят волноводные узлы для радиотехн. пром-сти, трубы разл. диаметра, рефлекторы, коробки для аккумуляторов, сопла, детали авиац. техники, прессформы и др.

Технология включает изготовление формы, подготовку ее пов-сти, электроосаждение металла, отделение готового изделия от формы. Разработаны также комбиниров. гальванопластич. процессы, основанные на электроосаждении относительно тонкого слоя металла с послед. обволакиванием его пластмассой. Форму изготавливают из металла (сталь, Zn, Cu, A1 и др.) или из воска, гипса, пластмассы. Перед электроосаждением пов-сть формы очищают от загрязнений, наносят на нее проводящий слой (если форма из неметаллич. материала), затем разделит. слой для предотвращения прочного сцепления осаждаемого металла с поветью формы. При выборе электролитов для осаждения осн. слоя металла учитывают требуемые физ.-мех. св-ва слоя, равномерность распределения тока и металла по пов-сти катода, отсутствие склонности к дендритообразованию, скорость осаждения металла. Разработаны электролиты для осаждения Си, Ni, Co, Fe, Ag, Au, Zn, Sn, A1 и др.; наиб. широко применяют Си и Ni. Разработана технология осаждения жаростойких металлов и сплавов, комбиниров. слоев металлов с порошками тугоплавких соединений. Медь осаждают из сульфатных, фтороборатных, пирофосфатных, кремнефторидных, цианидных и нитратных р-ров, никель — из сульфатных, хлоридных, фтороборатных и сульфаматных.


===
Исп. литература для статьи «ГАЛЬВАНОТЕХНИКА»: Блестящие электролитические покрытия, под ред. Ю. Мату лиса, Вильнюс, 1969; Инженерная гальванотехника в приборостроении, под ред. A.M. Гинберга, М., 1977; Кудрявцев Н. Т., Электролитические покрытия металлами, М., 1979; Вячеславов П. М., Волянюк Г. А., Электролитическое формование, Л., 1979; Казначей Б. Я., "Ж. Всес. хим. о-ва им. Д.И. Менделеева", 1980, т. 25, № 2, с. 192-202; Матулис Ю. Ю., там же, с. 122-28; Гальванические покрытия в машиностроении, под ред. М.А. Шлугера, т. 1, М., 1985. P.M. Вишолшрскис.

Страница «ГАЛЬВАНОТЕХНИКА» подготовлена по материалам химической энциклопедии.

Еще по теме:
___

     © ХиМиК.ру




Реклама   Обратная связь   Дизайн