Коррозия металлов, разрушение металлов вследствие химического или электрохимического взаимодействия их с внешней (коррозионной) средой. В результате коррозии ежегодно теряется от 1 до 1,5% всего металла, накопленного и эксплуатируемого человечеством. В денежном выражении прямые потери от коррозии (на воспроизводство и замену вышедшего из строя оборудования) составили, по примерной оценке, в США за 1955 около 5,5 млрд. долларов, во Франции за 1959 около 250 млрд. франков. В СССР в конце 60-х гг. они были не ниже 5—6 млрд. рублей в год. Трудно учесть более высокие косвенные потери от простоев и снижения производительности оборудования, подвергшегося коррозии, от нарушения нормального хода технологических процессов, от аварий, обусловленных снижением прочности металлических конструкций, и т. п. В народном хозяйстве всё шире применяются всевозможные средства и методы борьбы с коррозией (см. Антикоррозионная защита).

  Причина коррозии: термодинамическая неустойчивость системы, состоящей из металла и компонентов окружающей (коррозионной) среды. Мерой термодинамической неустойчивости является свободная энергия, освобождаемая при взаимодействии металла с этими компонентами. Но свободная энергия сама по себе ещё не определяет скорость коррозионного процесса, т. е. величину, наиболее важную для оценки коррозионной стойкости металла. В ряде случаев адсорбционные или фазовые слои (плёнки), возникающие на поверхности металла в результате начавшегося коррозионного процесса (см. Пассивирование металлов), образуют настолько плотный и непроницаемый барьер, что коррозия прекращается или очень сильно тормозится. Поэтому в условиях эксплуатации металл, обладающий большим сродством к кислороду, может оказаться не менее, а более стойким (так, свободная энергия образования окисла у Cr или Al выше, чем у Fe, а по стойкости они часто превосходят Fe).

  Коррозионные процессы классифицируют: а) по виду (геометрическому характеру) коррозионных разрушений на поверхности или в объёме металла, б) по механизму реакций взаимодействия металла со средой (химическая и электрохимическая коррозия), в) по типу коррозионной среды, г) по характеру дополнительных воздействий, которым подвергается металл одновременно с действием коррозионной среды.

  Виды коррозионных разрушений. Коррозия, захватившая всю поверхность металла, называется сплошной. Её делят на равномерную и неравномерную в зависимости от того, одинакова ли глубина коррозионного разрушения на разных участках. При местной коррозии поражения локальны и оставляют практически незатронутой значительную (иногда подавляющую) часть поверхности. В зависимости от степени локализации различают коррозионные пятна, язвы и точки (питтинг). Точечные поражения могут дать начало подповерхностной коррозии. распространяющейся в стороны под очень тонким (например, наклёпанным) слоем металла, который затем вздувается пузырями или шелушится. Наиболее опасные виды местной коррозии — межкристаллитная (интеркристаллитная), которая, не разрушая зёрен металла, продвигается вглубь по их менее стойким границам, и транскристаллитная, рассекающая металл трещиной прямо через зёрна. Почти не оставляя видимых следов на поверхности, эти поражения могут приводить к полной потере прочности и разрушению детали или конструкции. Близка к ним по характеру ножевая коррозия, словно ножом разрезающая металл вдоль сварного шва при эксплуатации некоторых сплавов в особо агрессивных растворах. Иногда специально выделяют поверхностную нитевидную коррозию, развивающуюся, например, под неметаллическими покрытиями, и послойную коррозию, идущую преимущественно в направлении пластической деформации. Специфична избирательная коррозия, при которой в сплаве могут избирательно растворяться даже отдельные компоненты твёрдых растворов (например, обесцинкование латуней).

  Химическая и электрохимическая коррозия. Коррозия является химической, если после разрыва металлической связи атомы металла непосредственно соединяются химической связью с теми атомами или группами атомов, которые входят в состав окислителей, отнимающих валентные электроны металла. Химическая коррозия возможна в любой коррозионной среде, однако чаще всего она наблюдается в тех случаях, когда коррозионная среда не является электролитом (газовая коррозия, коррозия в неэлектропроводных органических жидкостях). Скорость её чаще всего определяется диффузией частиц металла и окислителя через поверхностную плёнку продуктов коррозии (высокотемпературное окисление большинства металлов газами), иногда — растворением или испарением этой плёнки (высокотемпературное окисление W или Mo), её растрескиванием (окисление Nb при высоких температурах) и изредка — конвективной доставкой окислителя из внешней среды (при очень малых его концентрациях).

  Коррозия является электрохимической, если при выходе из металлической решётки образующийся катион вступает в связь не с окислителем, а с другими компонентами коррозионной среды; окислителю же передаются электроны, освобождающиеся при образовании катиона. Такой процесс возможен в тех случаях, когда в окружающей среде существуют два типа реагентов, из которых одни (сольватирующие или комплексообразующие) способны соединяться устойчивыми связями с катионом металла без участия его валентных электронов, а другие (окислители) могут присоединять валентные электроны металла, не удерживая около себя катионы. Подобными свойствами обладают растворы или расплавы электролитов, где сольватированные катионы сохраняют значительную подвижность. Т. о., при электрохимической коррозии удаление атома из металлической решётки (что составляет суть любого коррозионного процесса) осуществляется в результате двух независимых, но сопряжённых, связанных между собой электрическим балансом, электрохимических процессов: анодного — переход сольватируемых катионов металла в раствор, и катодного — связывание окислителем освобождающихся электронов. Отсюда следует, что процесс электрохимической коррозии можно замедлить не только путём непосредственного торможения анодного процесса, но также воздействуя на скорость катодного. Наиболее распространены два катодных процесса: разряд водородных ионов (2е + 2H+ = H2) и восстановление растворённого кислорода (4e+O2+4H+ = 2H2O или 4e+O2+2H2O =4ОН-), которые часто называют соответственно водородной и кислородной деполяризацией.

  Анодный и катодный процессы с той или иной вероятностью и в той или иной последовательности протекают в любых точках металлической поверхности, где катионы и электроны могут взаимодействовать с компонентами коррозионной среды. Если поверхность однородна, то катодные и анодные процессы равновероятны по всей её площади; в таком идеальном случае коррозию называют гомогенно-электрохимической (отмечая таким образом отсутствие какой-либо неоднородности в распределении вероятности электрохимических процессов в любой точке поверхности, что, конечно, не исключает термодинамической гетерогенности взаимодействующих фаз). В действительности на металлических поверхностях существуют участки с различными условиями доставки реагирующих компонентов, с разным энергетическим состоянием атомов или с различными примесями. На таких участках возможно более энергичное протекание либо анодного, либо катодного процессов, и коррозия становится гетерогенно-электрохимической.

  Проводимость металла очень высока, и при возникновении избыточного заряда электроны практически мгновенно перераспределяются, так что плотность заряда и электрического потенциал металла меняются одновременно по всей его поверхности независимо от того, в каких её точках электроны освободились после ухода катионов, а в каких захватываются окислителем. В частности, это означает, что от мест, где преимущественно осуществляется анодная реакция, электроны перемещаются в металле к местам протекания катодной. Соответственно раствор вблизи анодных участков принимает избыточный положительный заряд растворившихся катионов, а вблизи катодных заряжается отрицательно в результате захвата электронов растворённым окислителем. В растворе эти заряды не перераспределяются так легко, как в металле. Поэтому с повышением скорости процесса потенциал раствора в непосредственной близости от анодных участков становится всё более положительным, что затрудняет дальнейший выход из металла положительно заряженных катионов, а вблизи катодных участков — более отрицательным, что затрудняет катодный процесс. Иначе это можно представить, как вызванное протеканием тока омическое падение напряжения между прианодным и прикатодным слоями раствора, с учётом которого потенциал металла по отношению к прианодному слою оказывается несколько более отрицательным, а по отношению к прикатодному — более положительным, чем по отношению к объёму раствора. В случаях, когда такое омическое падение напряжения велико (очень высокая плотность тока, низкая электрическая проводимость раствора, большое взаимное удаление катодных и анодных участков), коррозионную систему удобнее представить в виде системы короткозамкнутых микро- или макрогальванических элементов. В остальных случаях при определении средней по площади скорости растворения металла современная теория наряду с такой моделью позволяет также представлять электрохимически гетерогенную поверхность как квазигомогенную. Тогда ей приписывают удельные анодные и катодные характеристики, равные интегрально усреднённым по площади значениям одноимённых характеристик моделируемой гетерогенной поверхности, и графически изображают их на коррозионной диаграмме в виде анодных и катодных поляризационных кривых. Эти кривые показывают, как влияет электродный потенциал на усреднённые по площади и выраженные в единицах (или логарифмах) плотности тока скорости выхода катионов и электронов с данной поверхности в данный электролит. Диаграмма может быть очень сложной, т. к. в реальных системах на форму кривых могут влиять многие факторы, в том числе диффузия окислителя или переходящих в раствор катионов, пассивация металла и различные нарушения пассивного состояния (см. Пассивирование металлов). На рисунке дана схематическая коррозионная диаграмма для простейшего гипотетического случая, когда ни один из перечисленных факторов не оказывает влияния.

  Анодный и катодный процессы, как было отмечено выше, связаны электрическим балансом. Электроны, оставляемые уходящими катионами, сообщают металлу отрицательный заряд, который затрудняет выход катионов в раствор, но одновременно ускоряет катодный процесс. Последний, в свою очередь, способствуя уменьшению отрицательного заряда металла, самозатормаживается, но облегчает протекание анодной реакции. Т. о. происходит саморегулирование заряда металлической поверхности, являющееся одним из важных элементов механизма установления стационарного потенциала коррозии (jст), при котором катодная (К) и анодная (А) поляризационные кривые пересекаются (точка S). Хотя скорость электрохимической коррозии и зависит от потенциала, однако связь эта далеко неоднозначна, что можно видеть на следующем примере. Если при неизменных анодных характеристиках (кривая А) на поверхности металла появляются дополнительные активные катоды, то вызванное ими облегчение катодного процесса (описываемого теперь кривой К') может привести к ускорению растворения металла (до тех пор, пока не будет достигнута плотность тока i*ст) со сдвигом потенциала в положительном направлении (до j*ст). Наоборот, при неизменных катодных характеристиках (кривая К) и появлении дополнительных анодных участков (что соответствует протеканию процесса, описываемого кривой А') коррозия ускоряется (до i**ст) со сдвигом потенциала в отрицательную сторону (до j**ст). Однако при пропорциональном облегчении обоих процессов (кривые A' и К') значительное ускорение коррозии (до i***ст) возможно без изменения потенциала. Более сложные случаи наблюдаются при пассивации, а также нарушениях пассивного состояния.

  Коррозия в различных средах, влияние дополнительных факторов (воздействий). Некоторые коррозионные среды и вызываемые ими разрушения столь характерны, что по названию этих сред классифицируются и протекающие в них коррозионные процессы. Так, выделяют газовую коррозию, т. е. химическую коррозию под действием горячих газов (при температуре много выше точки росы). Характерны некоторые случаи электрохимической коррозии (преимущественно с катодным восстановлением кислорода) в природных средах: атмосферная — в чистом или загрязнённом воздухе при влажности, достаточной для образования на поверхности металла плёнки электролита (особенно в присутствии агрессивных газов, например СО2, Cl2, или аэрозолей кислот, солей и т. п.); морская — под действием морской воды и подземная — в грунтах и почвах.

  Коррозия под напряжением развивается в зоне действия растягивающих или изгибающих механических нагрузок, а также остаточных деформаций или термических напряжений и, как правило, ведёт к транскристаллитному коррозионному растрескиванию, которому подвержены, например, стальные тросы и пружины в атмосферных условиях, углеродистые и нержавеющие стали в паросиловых установках, высокопрочные титановые сплавы в морской воде и т. д. При знакопеременных нагрузках может проявляться коррозионная усталость, выражающаяся в более или менее резком понижении предела усталости металла в присутствии коррозионной среды. Коррозионная эрозия (или коррозия при трении) представляет собой ускоренный износ металла при одновременном воздействии взаимно усиливающих друг друга коррозионных и абразивных факторов (трение скольжения, поток абразивных частиц и т. п.). Родственная ей кавитационная коррозия возникает при кавитационных режимах обтекания металла агрессивной средой, когда непрерывное возникновение и «захлопывание» мелких вакуумных пузырьков создаёт поток разрушающих микрогидравлических ударов, воздействующих на поверхность металла. Близкой разновидностью можно считать и фреттинг-коррозию, наблюдаемую в местах контакта плотно сжатых или катящихся одна по другой деталей, если в результате вибраций между их поверхностями возникают микроскопические смещения сдвига.

  Утечка электрического тока через границу металла с агрессивной средой вызывает в зависимости от характера и направления утечки дополнительные анодные и катодные реакции, могущие прямо или косвенно вести к ускоренному местному или общему разрушению металла (коррозия блуждающим током). Сходные разрушения, локализуемые вблизи контакта, может вызвать соприкосновение в электролите двух разнородных металлов, образующих замкнутый гальванический элемент, — контактная коррозия. В узких зазорах между деталями, а также под отставшим покрытием или наростом, куда проникает электролит, но затруднён доступ кислорода, необходимого для пассивации металла, может развиваться щелевая коррозия, при которой растворение металла в основном происходит в щели, а катодные реакции частично или полностью протекают рядом с ней на открытой поверхности.

  Принято выделять также биологическую коррозию, идущую под влиянием продуктов жизнедеятельности бактерий и др. организмов, и радиационную коррозию — при воздействии радиоактивного излучения.

  Количественная оценка коррозии. Скорость общей коррозии оценивают по убыли металла с единицы площади (К), например в г/м2×ч, или по скорости проникновения коррозии, т. е. по одностороннему уменьшению толщины нетронутого металла (П), например в мм/год. При равномерной коррозии П = 8,75К/r, где r — плотность металла в г/см3. При неравномерной и местной коррозии оценивается максимальное проникновение. По ГОСТу 13819—68 установлена 10-балльная шкала общей коррозионной стойкости (см. табл.). В особых случаях коррозия может оцениваться и по др. показателям (потеря механической прочности и пластичности, рост электрического сопротивления, уменьшение отражательной способности и т. д.), которые выбираются в соответствии с видом коррозии и назначением изделия или конструкции.

  10-балльная шкала для оценки общей коррозионной стойкости металлов

Группа стойкости

Скорость коррозии металла, мм/год.

Балл

Совершенно стойкие

Менее 0,001

1

Весьма стойкие

Свыше 0,001 до 0,005

Свыше 0,005 до 0,01

2

3

Стойкие

Свыше 0,01 до 0,05

Свыше 0,05 до 0,1

4

5

Пониженно-стойкие

Свыше 0,1 до 0,5

Свыше 0,5 до 1,0

6

7

Малостойкие

Свыше 1,0 до 5,0

Свыше 5,0 до 10,0

8

9

Нестойкие

Свыше 10,0

10

  При подборе материалов, стойких к воздействию различных агрессивных сред в тех или иных конкретных условиях, пользуются справочными таблицами коррозионной и химической стойкости материалов или проводят лабораторные и натурные (непосредственно на месте и в условиях будущего применения) коррозионные испытания образцов, а также целых полупромышленных узлов и аппаратов. Испытания в условиях, более жёстких, чем эксплуатационные, называют ускоренными.

 

  Лит.: Акимов Г. В., Основы учения о коррозии и защите металлов, М., 1946; Томашов Н. Д., Теория коррозии и защита металлов, М., 1959; Эванс Ю. P., Коррозия и окисление металлов, пер. с англ., М., 1962; Розенфельд И. Л., Атмосферная коррозия металлов, М., 1960; Бялобжеский А. В., Радиационная коррозия, М., 1967. См. также лит. при ст. Коррозионностойкие материалы.

  А. В. Бялобжеский, В. М. Новаковский.


Коррозионная диаграмма: К, К' — катодные поляризационные кривые; А, A' — анодные поляризационные кривые.