Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


БИОЭЛЕКТРОХИМИЯ

БИОЭЛЕКТРОХИМИЯ, изучает электрохим. закономерности, лежащие в основе биол. процессов (в частности, передачи информации по нервным волокнам, преобразования энергии, фотосинтеза, рецепции, взаимод. и слияния клеток), а также воздействие внеш. электрич. полей на биол. системы. Общая стадия всех упомянутых процессов - разделение зарядов (электронов или ионов), реализующееся в ходе окислит.-восстановит. р-ции или при транспорте ионов через мембраны. Это приводит к возникновению мембранного потенциала и градиентов концентрации ионов между внутр. частью клетки и окружающей средой. Своб. энергия, накопленная в виде мембранного потенциала или концентрационных градиентов, обеспечивает генерацию и передачу нервных импульсов, синтез АТФ, нек-рые виды мех. движения и т.п.

Термодинамика и кинетика окислит.-восстановит. р-ций, в к-рых участвуют биологически активные соед., изучаются вольтамперометрич. методами с использованием капающего (обычно ртутного) или стационарного электрода. Эти методы позволяют определить число электронов, вовлеченных в р-цию при каждом значении потенциала, а также обнаружить неустойчивые промежут. соединения, в т.ч. короткоживущие радикалы, к-рые не удается зарегистрировать методом ЭПР. Электрохим. методы имеют широкую область применения и позволяют изучать тонкости механизма р-ций. Они пригодны для проведения уникальных синтезов и решения сложных аналит. задач, т. к. чувствительность импульсной полярографии позволяет, напр., обнаружить 10-8 М электрохимически активного в-ва. Возможность применения электрохим. методов для решения упомянутых проблем основана на сходстве электрохим. и биол. окислит.-восстановит. р-ций: оба типа являются гетерогенными (первые осуществляются на повети электрода, вторые - на границе фермент - р-р), идут в одном интервале рН и в р-рах той же ионной силы, протекают в неводных средах и в одинаковом интервале т-р, включают стадию ориентации субстрата. Электрохим. методы позволяют получать информацию об окислит.-восстановит. потенциалах, числе электронов, механизме р-ций с участием азотсодержащих гетероциклич. соед. (пурины, пиримидины, порфирины и т.п.). Емкостные измерения дают важные сведения об адсорбционных св-вах низкомол. и высокомол. биологически активных соед. (нуклеотиды, белки, нуклеиновые к-ты).

В биоэлектрохимии мембран применяют след. модельные системы: плоские липидные бислои, липосомы, монослои на границе раздела фаз вода - воздух, границы раздела несмешивающихся жидкостей (напр., вода - октан). Бислои применяют для реконструкции транспортных клеточных систем-ионных каналов возбудимых биомембран активно транспортирующих белков (АТФ-азы, бактериородопсин и др.). Они удобны для изучения ионного транспорта, осуществляемого жирорастворимыми анионами (дипикриламин, тетрафенилборат и т.п.) и мембранно-активными комплексонами (валиномицин, грамицидин и пр.). На липидных би-и монослоях изучают поверхностные св-ва мембран, напр. строение двойного электрического слоя, адсорбцию ионов и ПАВ. Наконец, бислои используют для изучения мех. св-в мембран, их устойчивости в электрич. поле и механизмов слияния. Применяемые методы: регистрация токов проводимости и емкостных токов при наложении электрич. напряжения, изменяющегося по определенному закону; измерение поверхностного натяжения или давления (в случае монослоев); регистрация Вольта-потенциала (в случае границ раздела вода - воздух, вода - октан); опгич. и спектральные измерения. Эксперим. и теоретич. исследования ионного транспорта на липидных бислоях в присут. ионофоров позволили выявить два осн. механизма переноса - с помощью подвижных переносчиков (типичный пример - валиномицин) и через каналы (напр., грамицидин А). Показано, что транспортные системы возбудимых биол. мембран действуют как селективные ионные каналы.

Изучение механоэлектрич. явлений, напр. движения и ориентации клеток во внеш. электрич. полях, структурных перестроек мембран при электрич. пробое и электростимулируемом слиянии клеток, заложило основу для медико-биол. и биотехнол. приложений (создание искусств. носителей лек. препаратов, мембранная диагностика, получение гибридных клеток). Крупное достижение биоэлектрохимии - доказательство справедливости хемиосмотич. гипотезы Митчелла (объясняет механизм преобразования энергии в мембране при синтезе АТФ; см. Биоэнергетика), полученное в опытах по реконструкции мембранных систем в разл. модельных системах, в т.ч. в липосомах.

Хотя изучение распространения возбуждений по нервным волокнам и нейронным сетям традиционно относится к электрофизиологии и биофизике, для понимания механизма этих процессов много дали исследования в таких электрохим. системах, как пассивирующиеся электроды и заряженные пористые мембраны.

К прикладной биоэлектрохимии относится разработка ионселективных микроэлектродов для внутриклеточного использования, микроэлектродов для внутриклеточных инъекций электрохимически активных в-в, электрохим. биосенсоров (бактериальные и тканевые электроды) и ионселективных электродов, использующих ионофоры. К медико-биол. приложениям относится изучение внеклеточных электрич. полей и механизмов воздействия внеш. полей и токов на физиол. процессы, включая регенерацию тканей.

Термин "биоэлектрохимия" получил официальное признание в 1971.


===
Исп. литература для статьи «БИОЭЛЕКТРОХИМИЯ»: Скулачев В. П., Трансформация энергии в биомембранах, М, 1972; Маркин В. С, Чизмаджев Ю. А., Индуцированный ионный транспорт, М., 1974; Овчинников Ю. А., Иванов В. Т., ШкробА.М., Мембрано-активные комплексоны, М., 1974; Иммобилизованные ферменты, подред. И. В. Березина [и др.], т. 1-2, М., 1976; Богуславский Л. И., Биоэлектрохимические явления и граница раздела фаз, М., 1979; Маркин В. С, Пастушенко В. Ф., Чизмаджев Ю. А., Теория возбудимых сред, М., 1981; Корыта И., Ионы, электроды, мембраны, пер. с чешек., М., 1983; Dryhurst G., Electrochemistry of biological molecules, N.-Y.,1977. Ю. А. Чизмаджев.

Страница «БИОЭЛЕКТРОХИМИЯ» подготовлена по материалам химической энциклопедии.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн