Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


МИНЕРАЛ

МИНЕРАЛ (от позднелат. minera-руда), прир. твердое тело с характерными хим. составом, кристаллич. структурой и св-вами. Образуется в результате физ. и хим. процессов (экзогенных, эндогенных и метаморфических; см. Полезные ископаемые)в глубинах и на пов-сти Земли, Луны, др. планет и космич. тел. Минерал-составная часть горных пород, руд и метеоритов. Как исключение к минералам относят жидкую ртуть и прир. амальгамы, аморфные опал и аллофан (водный силикат алюминия). Выделяют также метамиктные минералы, к-рые утратили кристаллич. строение в результате радиоактивного распада. Минерал, как правило,-неорг. в-ва, но иногда к ним относят кристаллич. орг. соединения (в частности, окса-латы), нек-рые твердые углеводороды и ископаемые смолы (компоненты янтаря). Воду, в отличие от льда, обычно не считают минералом. По мнению В. И. Вернадского, однако, минералами являются не только твердые прир. образования, но также жидкости и газы.

Понятие минерал употребляют для обозначения минеральных индивида, вида и разновидности. Минер. индивиды-отдельные кристаллы или кристаллич. зерна. Их размеры варьируют от 1-100 нм (коллоидные минералы) до неск. м. Минер. вид-совокупность минер. индивидов однотипной структуры, хим. состав к-рых может изменяться в определенных пределах без изменения структуры. Минералы одинакового состава, но разной структуры-полиморфные модификации (напр., алмаз и графит, кальцит и арагонит) - относят к разным минер. видам. Непрерывные ряды твердых р-ров (изоморфные смеси) условно делят на неск. минер. видов. Так, в двухкомпонентных твердых р-рах выделяют обычно три минер. вида (с содержанием одного из компонентов 100-75, 75-25 и 25-0 мол. или ат. %), реже два (0-50 и 50-100 мол. или ат. %), а в трехкомпонентных-семь или три. Минер. разновидность выделяют внутри минер. вида по особенностям структуры, состава, морфологии и св-в. Известно ок. 3000 минер. видов и почти столько же разновидностей.

Называют минералы по составу, месту находки, особенностям морфологии, характерному св-ву, в честь ученых, путешественников, космонавтов, политич. деятелей и т.д.

Структура. Структурными единицами в узлах кристаллич. решетки м. б. атомы (как, напр., в алмазе), ионы (напр., Na+, UO22+, NH+4, Н3О+ , Cl-, CO32-, PO43-), а также молекулы (S8 в сере, As4S4. в реальгаре). Они удерживаются в структуре благодаря ионной, ковалентной, металлич. и водородной связям, а также ван-дер-ваальсовым взаимодействиям. В т. наз. гомо(изо)десмич. структурах имеется только один тип связи (ковалентная в алмазе, ионная в галите, металлическая в золоте); но гораздо чаще встречаются гетеро(анизо)десмич. структуры с неск. типами связи. Пространств. расположение структурных единиц, связанных наиб. прочными связями, определяет геом. "мотив" структуры: островной (в т.ч. кольцевой), цепочечный, ленточный, слоистый, каркасный, координационный. В структуре каждого минерала выделяют элементарную ячейку с соответствующей симметрией и параметрами (см. Кристаллы).

Реальная структура минералов отличается от идеальной наличием дефектов (вакансии в отдельных узлах кристаллич. решетки, примесные атомы или ионы в узлах или между узлами, изменение валентности у части ионов) и дислокаций. Упорядочение вакансий может приводить к увеличению одного из параметров элементарной ячейки. Для слоистых минералов (слюды, графит, молибденит и др.) характерна политипия, при к-рой происходит небольшой сдвиг слоев (пакетов) относительно друг друга с изменением периодичности в их чередовании. В результате разл. политипы одного минерала отличаются друг от друга параметрами вдоль одной из осей (причем эти параметры кратны одной и той же величине). При этом может происходить изменение вида симметрии элементарной ячейки вплоть до изменения сингонии. Однако существ. перестройки структуры, как при полиморфизме, не происходит.

Кроме того, атомы или ионы в нек-рых минералах могут распределяться по узлам кристаллич. решетки закономерно или статистически; соответственно различают упорядоченные и неупорядоченные структуры.

Химический состав и формулы. В состав минералов входят все стабильные и долгоживущие изотопы элементов периодич. системы, кроме инертных газов (хотя Аr и Не могут накапливаться в минералах как продукты радиоактивного распада). Различают видообразующие элементы и элементы-примеси, содержание к-рых в минералах составляет соотв. единицы-десятки и единицы-доли процента по массе. К последним обычно относят редкие и рассеянные элементы: Rb, Cs, Ra, Sc, Ga, In, Tl, Ge, Hf, Th, РЗЭ, Re, I, Br и др., к-рые, как правило, не образуют самостоятельных минералов. Примеси м. б. структурными (изоморфными) или механическими (адсорбир. элементы и соед., газово-жидкие микровключения, микроскопич. и суб-микроскопич. включения др. минералов), что связано с условиями образования минерала и с особенностями его кристаллич. структуры.

По числу (один, два или больше) видообразующих элементов среди минералов выделяют соотв. простые в-ва, бинарные и более сложные соединения. Бинарные соед. преобладают среди интерметаллидов (напр., Au2Bi, Pd3Sn, Pt3Fe), карбидов, нитридов, силицидов (Fe3C, FeSi, CrN), характерны для нек-рых халькогенидов (PbS, NiSe, Bi2Te3, NiAs, FeSb2), простых оксидов (MgO, Fe2O3, Al2O3, SiO2), галогенидов (NaCl, KCl, MgF2, CaF2). К более сложным соед. относятся нек-рые интерметаллиды (Au8PbTe, CuPt2Fe), карбиды и фосфиды (Fe2NiP, Fe20Ni3C), большая часть халькогенидов (Cu5FeS4, CoAsS, Ag3SbS3), гидроксиды и сложные оксиды (АlOОН, FeCr2O4), все соли кислородсодержащих к-т {Cas [PO4]3(F, Сl, ОН)}, часть галогенидов (NH4Cl, KMgCl3.6H2O) и все т. наз. галогеносоли (Na[BF4], Na3 [AlF6]). Характерная особенность силикатов, боратов и ванадатов - наличие полимерных анионов, В силикатах в строении анионного радикала принимают участие (кроме Si и О) Аl, В и Be.

Состав нек-рых минералов относительно постоянен (кварц, гематит и др.), однако большинство минералов имеют переменный состав, как, напр., члены изоморфных рядов в двух-, трех- и многокомпонентных системах.

Состав минералов выражается хим. ф-лой. Эмпирич. ф-ла отражает соотношения входящих в состав минерала элементов, к-рые располагаются в ней слева направо по мере увеличения номера группы в периодич. системе, а для элементов одной группы-по мере уменьшения их порядковых номеров, напр. кобальтин CoAsS, сподумен Li2O • Аl2О3 • 4SiO2. К р и с т а л л о х и м. ф-ла отражает связь состава со структурой. Она записывается по определенным правилам: сначала катионы; затем анионы, при этом комплексные анионы заключают в квадратные скобки; после аниона т. наз. дополнит. анионы (F-, Cl-, ОН-, О2-); молекулы воды обычно записываются в конце ф-лы; изоморфные элементы ставят в круглые скобки через запятую. Можно указать мотив полимерного аниона: цепочечный или ленточный (3017-6.jpg), слоистый (3017-7.jpg), каркасный (3017-8.jpg ). Напр., кристаллохим. ф-ла кобальтина имеет вид Co[AsS], сподумена-3017-9.jpg , талька-Mg33017-10.jpg(OH)2, альбита-3017-11.jpg . Степень окисления указывают справа вверху от символа элемента, а координац. число-слева вверху в круглых скобках, напр.: магнетит Fe2+Fe23+ O4, андалузит (6)Al(5)Al [SiO4] О. Ф-лы минералов, для к-рых характерны разнообразные изоморфные замещения, записывают в обобщенном виде, напр. блеклые руды М+10М22+ [Y4X13], где М+ -Сu, Ag; M2+ -Fe, Zn, Сu, Hg, Cd, Mn; Y-As, Sb, Bi, Те; X-S, Se.

В составе минералов может присутствовать вода: связанная, или конституционная, в ионизир. виде (ОН-, Н3О+); кристаллизационная в виде молекул Н2О, кол-во к-рых в элементарной ячейке постоянно, и свободная (адсорбированная, капиллярная, межслоевая и др.), кол-во к-рой непостоянно, что обозначается n.Н2О или aq. Минерал может содержать одновременно неск. типов воды, что отражается в кристаллохим. ф-лах, напр.: гипс Са [SO4]•2Н2О, гидромусковит (К, Н3O+) Аl2 [AlSi3O10] (OH)2•nН2O.

Реальный состав минерала всегда отличается от идеальной ф-лы минер. вида. Так, ф-ла минер. вида сфалерита-ZnS, а в результате хим. анализа конкретного образца сфалерита м. б. получена, напр., такая ф-ла: (Zn0,70Fe0,15Mn0,10Cd0,03In0,02)S.

Классификация. Общепринятой классификации минералов нет. Наиб. рациональной классификацией минер. видов считают кристаллохимическую, к-рая в равной степени учитывает хим. состав и структурные особенности минералов и позволяет выявлять взаимосвязи между составом, кристаллич. структурой, св-вами и морфологией (см. ниже) минералов. Так, иногда минералы подразделяют по составу на шесть типов: самородные элементы (простые в-ва), интерметаллиды, карбиды и им подобные, халькогениды, кислородные соед., галогенные соединения. В трех последних типах характер аниона (простой или комплексный) служит основанием для выделения соответствующих подтипов, а конкретный состав аниона-для выделения классов (см. табл.).

КЛАССИФИКАЦИЯ МИНЕРАЛОВ

Классификация минералов

Морфология (формы выделения). Минералы часто образуют кристаллы определенной формы, свойственной данному минер. виду. Облик их м. б. изометрический, удлиненный (столбчатый, игольчатый и др.) или уплощенный (таблитчатый, чешуйчатый и др.). Нередко кристаллы закономерно срастаются в виде двойников, тройников, четверников, шестсрни-ков. Незакономерные сростки кристаллов и кристаллич. зерен образуют минер. агрегаты (друзы, щетки, сферолиты, оолиты и др.). Морфология кристаллов и агрегатов дает информацию об условиях образования минералов и используется при их диагностике.

Свойства минералов обусловлены их кристаллич. структурой и хим. составом. Они являются основой диагностики минералов, учитываются при поисках в разведке полезных ископаемых, при обогащении и комплексной переработке руд и применении минералов. Мех. св-ва включают твердость, хрупкость, ковкость, спайность, отдельность, излом, гибкость (сопротивление излому), упругость. Под твердостью понимают степень сопротивления минералов к.-л. воздействию. Для определения относит. твердости минералов используют шкалу Мооса, составленную из 10 эталонов-минералов с условной твердостью от 1 до 10: 1-тальк, 2-гипс, 3-кальцит, 4-флюорит, 5-апатит, 6-ортоклаз, 7-кварц, 8-топаз, 9-корунд, 10-алмаз (расположены в порядке возрастания твердости). Этими минералами царапают пов-сть исследуемого минерала. Т. наз. микротвердость (кгс/мм2) рассчитывают по величине углубления, полученного в стандартных условиях при вдавливании в минерал алмазной пирамидки на спец. приборе-микротвердомере. Твердость минерала зависит гл. обр. от его кристаллич. структуры, типа и прочности хим. связей. С твердостью минералов связаны их хрупкость и ковкость. Спайность минералов-это способность раскалываться при ударе по определенным направлениям с образованием плоских пов-стей. Спайность зависит от типа кристаллич. решетки, прочности связей и их пространств. распределения в структуре и, в зависимости от геом. типа структуры, может проявляться в одном, двух, трех и более направлениях. Отдельность подобна спайности, но обусловлена двойникованием, ориентированным замещением другими минералами, воздействием одностороннего давления. Излом (ступенчатый, занозистый, раковистый, неровный) характеризует пов-сть обломков, на к-рые раскалывается минерал (не по спайности) при ударе. Упругие св-ва оценивают по характеру деформации минерала при воздействии на него мех. напряжения (см. Реология).

О п т и ч. с в-в а минералов включают преломление, отражение и поглощение света, блеск, цвет, люминесценцию. Они также связаны с составом и структурой минералов. Преломление света наблюдается у прозрачных минералов (кислородные и галогенные соед.) и характеризуется показателем преломления п. Отражение света наблюдается в большей степени у непрозрачных и полупрозрачных минералов (металлы, интерметаллиды, халько-гениды, оксиды и гидроксиды) и характеризуется коэф. отражения R. По величинам п и R диагностируют минералы под микроскопом в проходящем или отраженном свете. Свето-поглощение (оптич. плотность) характеризует как прозрачные (алмаз, горный хрусталь), так и полупрозрачные (сфалерит, сера) и непрозрачные (магнетит, золото) минералы. Блеск минералов, наблюдаемый визуально,-одна из форм светоотражения. Он бывает металлическим, полуметаллическим, алмазным, стеклянным, жирным, матовым и др. Цвет минералов объясняется частичным поглощением видимого света и обусловлен присутствием в структуре ионов-хромофоров в качестве видообразующих элементов или изоморфных примесей, а также структурными дефектами, газово-жидкими включениями и микроскопич. включениями окрашенных минералов. Нек-рые минералы способны люминесцировать при облучении, нагревании, раскалывании, в результате трения.

Э л е к т р и ч. с в-в а выявляются у минералов при воздействии на них электркч. поля, в нек-рых случаях-при нагр. или мех. деформации. По величине электропроводности минералы делят на проводники (металлы, интерметаллиды), полупроводники (мн. халькогениды) и диэлектрики (кислородные и галогенные соед.). Диэлектрики не проводят электрич. тока, но на пов-сти нек-рых из них могут возникать электрич. заряды в результате нагревания (пироэлектричество, напр., в турмалине), давления, сжатия, растяжения (пьезоэлектричество в кварце) и трения (трибоэлектричество).

М а г н. с в-в а проявляются у минералов в магн. поле. Они связаны с магн. моментами атомов и особенностями структуры минералов. По величине магн. восприимчивости минералы подразделяют на диамагнетики, парамагнетики и ферромагнетики. По степени упорядоченности магн. моментов парамагнетики и ферромагнетики подразделяют на антиферромагнетики (напр., ильменит, гематит), ферромагнетики (самородное железо) и ферримагнетики (магнетит, пирротин). По плотности (г/см3) минералы делят на легкие (до 2,5), средние (2,5-4), тяжелые (4-8) и весьма тяжелые (> 8,0). Плотность зависит от атомных масс слагающих кристаллич. решетку атомов и ее геом. типа. Наиб. плотность (от 8 до 23 г/см3) имеют самородные металлы. Нек-рые минералы обладают радиоактивностью.

Диагностика и методы изучения. Предварит. диагностика минералов основывается на изучении морфологии и физ. св-в минералов, наблюдаемых визуально. Иногда дополнительно изучают люминесцентные, радиоактивные и магн. св-ва минералов,

р-римость их в воде и соляной к-те. О составе минералов судят по характерным хим. р-циям и по цвету пламени газовой горелки при внесении в него образца. Точная диагностика минералов осуществляется в лаб. условиях чаще всего оптическими (в поляризац. микроскопе) и рентгеновскими (напр., на дифрактометре) методами. Элементный состав минералов определяют методами спектрального, атомно-абсорбц. анализа, лазерного спектрального микроанализа. Электронно-зондовые методы позволяют определять состав микроколичеств минералов и устанавливать неоднородность и природу примесей без разрушения образца. Примеси в минералах изучают также с помощью электронной микроскопии и ЭПР. Электронное строение минералов исследуют методами ЭПР, ЯМР и мёссбауэ-ровской спектроскопии. Тип воды в минералах определяют методами термич. анализа, спектроскопии ИК и ЯМР. Явления структурной упорядоченности и политипии минералов изучают методами рентгенографии, электронографии, спектроскопии ЯМР. Электронная микроскопия в сочетании с электронографией эффективны при исследовании тонкодисперсных минералов.

Применение. Минералы служат источниками для получения металлов и др. хим. элементов, а также хим. соединений. Их используют как абразивные и огнеупорные материалы, применяют в керамике, оптике, радиоэлектронике, электро- и радиотехнике. Нек-рые минералы являются драгоценными и поделочными камнями. Св-ва минералов лежат в основе поиска и разведки полезных ископаемых, методов сепарации и обогащения руд. В широких масштабах в пром-сти получают синтетические минералы для радиоэлектроники, оптики, абразивной и ювелирной пром-сти.


===
Исп. литература для статьи «МИНЕРАЛ»: Поваренных А. С., Кристаллохимическая классификация минеральных видов, К., 1966; Булах А. Г., Руководство и таблицы для расчета формул минералов, 2 изд., М., 1967; Годовиков А. А., Введение в минералогию, Новосибирск, 1973; Марфунин А. С., Введение в физику минералов, М., 1974; Минералогические таблицы, Справочник, под ред. Е.И.Семенова, М., 1981; Годовиков А. А., Минералогия, 2 изд., М., 1983. Р. А. Виноградова.

Страница «МИНЕРАЛ» подготовлена по материалам химической энциклопедии.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн