Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ЛАЗЕРЫ ХИМИЧЕСКИЕ

ЛАЗЕРЫ ХИМИЧЕСКИЕ, устройства для прямого преобразования энергии хим. р-ции в энергию когерентного элект-ромагн. излучения. Инверсия населенности уровней обусловлена неравновесным распределением энергии хим. р-ции по степеням свободы молекул продукта. Для создания лазеров химических используют р-ции, скорость к-рых превышает скорость установления равновесного распределения выделяющейся энергии. Как правило, это р-ции с участием химически активных атомов или радикалов. Среди них особое место занимают цепные и разветвленные цепные р-ции, в к-рых химически активные центры (атомы и своб. радикалы) воспроизводятся (в разветвленных р-циях - размножаются) в ходе р-ции. Для создания нек-рого начального числа активных центров (инициирования цепной р-ции) необходимо затратить энергию. Поэтому чем больше длина цепи р-ции, тем большее кол-во хим. энергии переработается в лазерное излучение и тем меньшую роль будут играть затраты энергии на создание активных центров. При этом решающее значение имеет т. наз. хемолазерная длина цепи, определяемая как отношение скорости продолжения цепи к скорости релаксации возбужденных молекул, используемых для генерации когерентного излучения (но не к скорости гибели активных центров). Чем больше хемолазерная длина цепи, тем выше эффективность лазера по отношению к затратам энергии на инициирование р-ции. Начальная концентрация активных центров м. б. создана с помощью нехим. видов энергии либо чисто хим. способом, напр. в результате термодиссоциации молекул газовой смеси, нагреваемой до высокой т-ры за счет энергии протекающей в ней хим. р-ции, или путем использования разветвленной цепной р-ции. На нехим. инициировании основана работа мощных лазеров химических импульсного действия, в к-рых используют заранее приготовленную смесь газов при достаточно высоком давлении (напр., атмосферном). Такая смесь содержит значит. запас энергии, но химически стабильна.
Фтор-водородный лазер
Рис. 1. Схема фтор-водородпого лазера с нехим. инициированием: 1 - смеситель; 2 - активная зона (реактор); 3 - окна для выхода излучения; 4 и 5 - зеркала (непрозрачное и частично отражающее); 6 - инициирующий агент Q (УФ излучение или пучок электронов). Указаны основные процессы в реакторе; полный их набор включает десятки процессов, в т. ч. релаксацию и гибель активных центров.

Из смесителя 1 (рис. 1) рабочая смесь поступает в реактор 2, где под действием УФ облучения или пучка электронов (инициирующий агент) инициируется быстрая молекулярно-радикальная р-ция, высвобождающая запасенную в смеси энергию в виде короткого импульса когерентного излучения. При одной и той же степени инициирования чем больше хемолазерная длина цепи р-ции, тем выше энергия лазерного импульса. наиб. употребительны смеси, содержащие молекулярные фтор и водород (дейтерий), стабилизированные кислородом. Эти смеси обладают наиб. хемолазерной цепью. Генерирующими молекулами в них являются колебательно возбужденные HF* (DF*). На рис. 2 представлена схема лазера химического с чисто химическим способом инициирования, работающего на основе нецепной р-ции атомарного фтора с молекулярным водородом (или дейтерием).
Фтор-водородный лазер
Рис. 2. Схема фтор-водородного лазера с хим. инициированием (термодиссоииацией); 1 - камера сгорания; 2 сопловый блок; 3 активная зона (реактор); 4 - окна для выхода излучения; 5 и 6 - зеркала.

Активные центры - атомы фтора - нарабатываются в камере сгорания в результате тепловой диссоциации избыточного F2, к-рый одновременно служит окислителем горючего. В качестве горючего используют в-ва, осн. требование к к-рым состоит в том, чтобы продукты сгорания не тушили возбужденные молекулы, образующиеся в активной зоне и генерирующие лазерное излучение. Из камеры сгорания 1 атомарный фтор выпускается через сопловую решетку 2, в к-рой он разгоняется до сверхзвуковых скоростей и разбивается на мелкие струи для эффективного смешения с Н2, к-рый подается в активную зону лазера. Р-ция между атомарными фтором и водородом приводит к образованию колебательно возбужденных молекул HF*, к-рые генерируют излучение с длиной волны в диапазоне 2,7-3,2 мкм. Замена водорода дейтерием дает возможность получить когерентное излучение в диапазоне длин волн 3,8 4,2 мкм. Высокая т-ра в камере сгорания (~1800 К) позволяет создать высокоскоростной сверхзвуковой поток реагентов, что увеличивает мощность лазера. Гелий выполняет роль газа-разбавителя, препятствующего катастрофич. повышению т-ры в лазерной зоне, к-рое могло бы привести к срыву генерации и тепловому запиранию сверхзвукового потока. При непрерывной подаче и откачке компонентов такие лазеры химические работают в непрерывном режиме. Решающим обстоятельством при их создании является разделение в пространстве процессов наработки химически активных центров и получения возбужденных частиц, генерирующих излучение. Высокотемпературную камеру сгорания можно заменить низкотемпературной, если использовать цепную р-цию фтора с дейтерием. Атомарный фтор для инициирования цепного процесса нарабатывается при низкотемпературной р-ции NO.+F.:F.+NOF, начинающейся сразу при смешении их потоков. Истечение газов из камеры инициирования в лазерную зону происходит с дозвуковой скоростью, хотя возможны и сверхзвуковые варианты этого лазера химического. Генерирующая молекула - СО2, к-рая возбуждается путем передачи колебат. энергии от DF*. Возбужденная молекула СО2 релаксирует медленнее, чем DF*, что обеспечивает большую хемолазерную длину цепи. Замена дейтерия на водород приводит к снижению генерируемой мощности, т. к. HF* передает энергию СО2 менее эффективно, чем DF*. По своим мощностным и энергетич. показателям фторводородные лазеры химические импульсного и непрерывного действия пока не имеют равных. Среди др. типов лазеров химических следует отметить кислород-йодный лазер, в к-ром генерирующая частица - атомарный иод в состоянии 3P1/2. Возбуждается он в это состояние путем передачи энергии от молекул О2 в возбужденном синглетном состоянии 1D, к-рые образуются при р-ции Сl2 с водным р-ром Н2О2 и NaOH. Образование атомарного иода из молекулярного происходит при р-ции:

2O2(1D)+I2:2O2(1S)+2I(3P1/2)

Основные р-ции, приводящие к формированию активной среды и генерации когерентного излучения, следующие:

O2(1D)+I(3P3/2):O2(3S)+I(3P1/2);

I(3P1/2)+nhv:I(3P3/2)+(n +1)hv

Длина волны генерируемого когерентного излучения 1,315 мкм. Среди др. типов лазеров химических перспективны лазеры на основе разветвленной цепной р-ции горения CS2; генерирующая молекула-колебательно-возбужденный СО* (длина волны лазерного излучения ~5 мкм); ОН-СО2 - лазеры химические на основе р-ции Н+О3:ОН*+О2. Колебательно-возбужденный радикал ОН* передает энергию молекуле СО2, к-рая генерирует лазерное излучение с длиной волны ~10 мкм. Можно ожидать создания лазеров химических, излучающего в видимом диапазоне длин волн. Лазеры химические широко применяют в научных экспериментах в хим. кинетике, лазерной химии и спектроскопии. Это обусловлено прежде всего тем, что в диапазоне длин волн, равных 3-4 мкм, нет других достаточно интенсивных источников когерентного излучения. Техн. применения лазеров химических находятся в процессе разработки. Рассматриваются проекты использования мощных фтор-водородных и кислород-йодных лазеров химических для управляемого термоядерного синтеза. Кислород-йодный лазер химический, генерирующий излучение в ближнем ИК диапазоне, представляет интерес для обработки материалов. Спектр излучения фтор-водородных и кислород-йодных лазеров химических перекрывает диапазон поглощения огромного числа разл. молекул. Возможность генерации большого набора частот в одном лазерном импульсе делает эти лазеры химические перспективными для создания систем диагностики и контроля состава газовых смесей, в т. ч. дистанционных локаторов состава и состояния атмосферы - лидаров . Не исключено, что лазеры химические, обладая большой энергией излучения на единицу массы расходуемых реагентов, окажутся полезными при развитии технологии в космосе (напр., лазерной сварки). В иностранной литературе обсуждаются военные применения лазеров химических.
===
Исп. литература для статьи «ЛАЗЕРЫ ХИМИЧЕСКИЕ»: Химические лазеры, под ред. Р. Гросса и Дж. Ботта, пер. с англ.. М., 1980; Химические лазеры, под ред. Н. Г. Басова, М., 1982; Басов Н. Г., Ораевский А.Н., Химические лазеры, в кн.: Наука и человечество, М., 1983, с. 259 73. А.Н. Ораевский.

Страница «ЛАЗЕРЫ ХИМИЧЕСКИЕ» подготовлена по материалам химической энциклопедии.

___

     © ХиМиК.ру




Реклама   Обратная связь   Дизайн