Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


КОРРОЗИЯ МЕТАЛЛОВ

КОРРОЗИЯ МЕТАЛЛОВ (от позднелат. corrosio - разъедание), физ.-хим. взаимодействие металлич. материала и среды, приводящее к ухудшению эксплуатац. св-в материала, среды или техн. системы, частями к-рой они являются. В основе коррозии металлов лежит хим. р-ция между материалом и средой или между их компонентами, протекающая на границе раздела фаз. Чаще всего это - окисление металла, напр.
3Fe+2О2=Fe3O4; Fe+H2SO4=FeSO42
По стехиометрии такие р-ции довольно просты, но по механизму они относятся к наиб. сложным гетерог. р-циям. Иногда при коррозии металлов происходит и восстановление нек-рых компонентов материала; напр., при высоких давлениях и т-рах карбиды восстанавливаются в стали проникающим водородом. К коррозии металлов нередко относят также нек-рые случаи их растворения в жидких металлах (напр., растворение сталей в жидкометаллич. теплоносителях ядерных реакторов). Коррозия металлов - самопроизвольный процесс, сопровождающийся уменьшением энергии Гиббса системы конструкц. материал - среда. Для р-ций коррозии металлов изменения энергии Гиббса по порядку величины таковы же, как и для самопроизвольно протекающих хим. р-ций. Термодинамич. нестабильность системы конструкц. металл - среда является причиной широкой распространенности коррозии металлов во всех отраслях техники. Нормальная эксплуатация оборудования, коммуникаций, транспортных средств и т.п. часто возможна лишь при достаточном замедлении коррозии металлов, достигаемом при помощи многообразных способов и средств защиты от коррозии. Изменением состава материала или среды или созданием особых условий можно добиться того, что коррозия металлов самотормозится из-за образования поверхностных защитных слоев (см. Пассивность металлов, Ингибиторы коррозии, Коррозионностойкие материалы). На нек-рых металлах (Al, Ti и др.) защитные слои в ряде сред образуются и без спец. мер. Несмотря на успехи в борьбе с коррозией металлов, ее проблемы обостряются из-за непрерывного роста металлич. фонда и ужесточения условий эксплуатации металлов. Это связано с использованием высокоагрессивных сред (хим. пром-сть, ядерная и геотермальная области энергетики, разработка шельфа и др.), повышением рабочих т-р, давления и скоростей потоков, загрязнением атмосферы SO, и др. примесями и т.п. Новые конструкц. материалы нередко подвергаются малоизученным и трудно прогнозируемым коррозионным разрушениям. Повышаются экологич. требования к средствам и технологиям защиты от коррозии; становится менее доступным сырье для произ-ва ряда коpрозионностойких материалов. В итоге возрастают как безвозвратные потери металла, стоимость к-рых входит в прямые убытки от коррозии металлов, так и затраты на защиту от коррозии. Однако наиб. велики косвенные убытки от коррозии металлов, связанные с простоями и снижением фондоотдачи, потерями и ухудшением качества продукции, авариями и т. п. В сумме косвенные и прямые убытки от коррозии металлов и затраты на защиту [в соотношении примерно (3-4):1:1] в промышленно развитых странах достигают 4% национального дохода и более.
Механизм коррозии металлов определяется прежде всего типом агрессивной среды. В сухих окислит. газах при повыш. т-рах на пов-сти большинства конструкц. металлов образуется слой твердых продуктов коррозии (окалина). При условии сплошности этого слоя скорость коррозии металлов чаще всего лимитируется диффузией через него ионов металла к границе слой - газ или окислителя (напр., О2-) к границе слой-металл (подробнее см. Газовая коррозия). Иной механизм имеет очень распространенная коррозия металлов в электролитич. средах - р-рах электролитов (в т.ч. в виде тонких пленок на пов-сти металла), пропитанных электролитами пористых и капиллярно-пористых телах (почвы, бетоны, нек-рые изоляц. материалы, рыхлые отложения и др.), а также в расплавах электролитов. В таких средах суммарный процесс коррозии металлов можно записать в виде р-ции:
М+Ох=Мz++Red, (1)
где М - металл. Ох - частица окислителя. Red - его восстановл. форма (Ох имеет заряд +ze или Red - заряд -zе); здесь для упрощения принято равенство всех стехиометрич. коэффициентов. В преобладающем большинстве случаев р-ция (1) протекает по т. наз. электрохим. механизму: атом М и частица Ох непосредственно не контактируют, передача электронов от М к Ох происходит через зону проводимости М (рис. 1,а). Т. обр., процесс (1) фактически состоит из двух р-ций: анодного растворения металла и катодного восстановления окислителя:
М=Mz++ze, (la) Ох+ze = Red. (16)
Скорость каждой из р-ций м. б. определена соответствующим кинетич. ур-нием (см. Электрохимическая кинетика) и в этом смысле они полностью независимы, но при совместном протекании р-ции связаны условием электронейтральности системы. В нек-рых случаях возможно влияние продуктов одной р-ции на скорость другой.
Механизмы коррозии металлов
Рис. 1. Механизмы коррозии металлов: электрохимический (а); электрохимическо-химический (6); каталитический (в); предполагаемый химический (г). Для механизмов "6" и "в" принято зарядовое число z=2.

В электролитич. среде с высокой электрич. проводимостью ( металлич. пов-сть можно рассматривать как эквипотенциальную, т.е. имеющую одинаковый во всех точках электродный потенциал Е. Последний при стационарном протекании электрохим. коррозии металлов принимает, как правило, определенное значение Eкор, при к-ром одинаковы скорости анодной и катодной р-ций, обычно выражаемые в единицах плотности тока и обозначаемые ia и iк соответственно. Потенциал Eкoр наз. потенциалом коррозии или стационарным потенциалом; соответствующая ему величина плотности тока
ia=iк=iкор (2)
наз. скоростью или током коррозии. Коррозия металлов всегда необратимый процесс, поэтому значение Eкор не м. б. определено на основании термодинамич. соотношений и вычисляется только из кинетич. ур-ний р-ций (1а) и (16). В общем случае значения ia и iк зависят от потенциала E экспоненциально; эти зависимости в упрощенной записи имеют вид:
iа=kаехр(2,303Е/ba), (За) iк=kкcOxeхр(-2,З0ЗЕ/bк), (3б)
где cOx - концентрация окислителя Ох; ka и kк - эмпирич. постоянные при данной т-ре, к-рые, однако, могут зависеть от состава среды (kк не зависит от с); ba и bк - постоянные Тафеля (см. Тафеля уравнение) для анодной и катодной р-ций соответственно. В координатах E-lgi зависимости (За) и (36) изображаются прямыми линиями (рис. 2, А). точке пересечения к-рых отвечают величины Екор и iкор. При этом из (За) и (36) следует:
461_480-64.jpg
Скорость анодного растворения и катодного восстановления металла
Рис. 2. Зависимость скорости i анодного растворения металла (l a) и катодного восстановления окислителя (1б) от электродного потенциала Е при элсюрохпм механизме коррозии. А - катодный процесс протекает в истино кинeтч. режиме. Б в режиме предельного диффузионного тока. iкор и Eкор значения тока и потенциала коррозии соотв.. iд - предельный диффузионный ток.

Ур-ния (За) и (36) отражают, в частности, кинетику типичной для неокислит. кислых сред электрохим. коррозии металлов с восстановлением. Н+ - ионов; в водных р-рах р-ция (16) имеет вид: 2Н3О++2е=Н2+2Н2О. Если для анодной р-ции выполняется ур-ние (За), а скорость катодной р-ции полностью определяется диффузионным подводом Ох к пов-сти М, то величина iк максимальна в режиме предельного диффузионного тока iд (рис. 2, Б); в этом случае ik=iд=iкор и Eкop=balg(iдka-1). (5) Соотношение (5) характерно для распространенной в нейтральных и нек-рых др. средах электрохим. коррозии с восстановлением растворенного кислорода, в водных р-рах р-ция (16) имеет вид:
О2+2Н2О+4е=4ОН-.
В большинстве случаев распределение на пов-сти металла точек мгновенного протекания р-ций (1а) и (1б) изменяется во времени статистически беспорядочно; соотв. средняя по времени скорость анодной р-ции (а значит. и скорость коррозии металлов) в любой точке пов-сти одинакова и совпадает со скоростью катодной р-ции (равномерная или сплошная коррозия металлов). Гетерогенность металла или среды, разл. условия подвода окислителя или отвода продуктов коррозии, не нарушая эквипотенциальноети пов-сти (при высоких значениях (), могут приводить к возникновению на ней участков устойчивого предпочтительного протекания одной из р-ций - (1а) или (16), в соответствии с локальными значениями kа и ba, kк, bк и с (или iд). Для таких участков уже не выполняется равенство (2), т. с. iaik, а в предельном случае на одних участках со скоростью iа протекает практически только анодная р-ция, на других, со скоростью iк, - только катодная. Требование электронейтральности системы приводит к условию: iaSSa=iкSSк, где SS. и SSк - суммарные площади "анодных" и "катодных" участков соответственно. Чем больше значения iк и SSк/SSa, тем интенсивнее локальное растворение металла на анодных участках (в отсутствие пассивации). При возрастании такой предпочтит. локализации, как правило, возрастает опасность локальных коррозионных разрушений, к-рая в реальных условиях чаще всего превосходит опасность для системы равномерной коррозии металлов. Причины описанной локальной коррозии металлов многообразны: различия в составе зерна металла в объеме и на границе, концентрациях мех. напряжений, микровключения, разная природа контактирующих металлов, диффузионная неравнодоступность участков пов-сти и др. Участки пов-сти металла, на к-рых наблюдаются повыш. значения iа, м. б. макро- или микроскопическими. Первые наблюдаются обычно при контактной коррозии в месте соед. разнородных металлов, при щелевой коррозии (внутрищелевая пов-сть - анод, открытая - катод), на поздних стадиях питтинговой коррозии (питтинги в виде крупных язв); вторые - при межкристаллитной коррозии и на ранних стадиях питтинговой коррозии. Рост коррозионных трещин (см. Коррозия под напряжением) в ряде случаев объясняют тем, что анодный процесс локализуется в вершине (острие) трещин. В электролитич. среде с малой электрич. проводимостью ( за счет неоднородности металла или среды протяженная металлич. пов-сть м. б. неэквипотенциальной, т. е. для такой пов-сти характерно не одно значение Eкор, а нек-рое распределение потенциала. За исключением простейших по своей геометрии систем, теоретич. построение распределений потенциала и токов iа и iк при постоянстве ( требует решения дифференц. ур-ния Лапласа с разл. краевыми условиями. Однако кинетич. закономерности электрохим. коррозии металлов и для такой пов-сти остаются справедливыми. Искомые распределения потенциала м. б. найдены указанным способом лишь при известных для каждого участка пов-сти значениях kа и bа, kк, bк и с (или iд). Осн. электрохим. механизм коррозии металлов, выражаемый ур-ниями (1а) и (16), может иметь варианты. Р-ция (1а) при z/2 может протекать через одноэлектронные стадии, напр. при z=2:
М=М++е, (6а)
М+2++е. (6б) Катион промежут. валентности М+ в нск-рых случаях настолько устойчив, что может вступать в хим. р-цию
++Ох=2М2++Red (7)
прежде, чем успевает произойти его электрохим. анодное доокисление по р-ции (6б). Если при этом одновременно протекает р-ция (16), реализуется т. наз. электрохимическо-хим. механизм, при к-ром коррозия металлов обусловлена электрохим. р-циями (6а) и (6б) и хим. р-цией (7) (рис. 1,6). Если на металлич. пов-сти вместо окислителя Ох, к-рый из-за р-ции (7) не достигает ее, восстанавливаются катионы М2+2++е=М+, рис. 1,в), осуществляется т. наз. каталитич. механизм коррозии металлов, при к-ром М+ играет роль катализатора р-ции (1). Эти варианты электрохим. механизма возможны в водных средах, но м. б. наиболее существенными при коррозии металлов в орг. средах. Для таких сред, обычно характеризующихся малыми значениями (, ранее считалось обязательным протекание коррозии металлов по т. наз. хим. механизму, когда передача всех z электронов от М к Ох происходит непосредственно, в одном элементарном акте (рис. 1, г). В действительности же для электрохим. коррозии металлов объемная величина х не имеет принципиального значения, по этому механизму протекает коррозия металлов во многих малоэлектропроводных орг. средах; возможность хим. механизма сейчас допускают лишь для р-ров на основе неполярных р-рителей. В то же время в электропроводных водных р-рах (кислых и слабокислых) для ряда металлов при электродных потенциалах более отрицательных, чем Eкор (а при повыш. т-рах - и вблизи Eкор), скорость растворения не зависит от Е (участок MN на кривой а, рис. 2), причем этот эксперим. факт не м. б. объяснен диффузионными ограничениями. Одной из возможных причин его существования считают протекание р-ции (1) по хим. механизму. Классификация коррозии металлов определяется конкретными особенностями среды и условиями протекания процесса (подводом окислителя, агрегатным состоянием и отводом продуктов коррозии, возможностью пассивации металла и др.). Обычно выделяют коррозию металлов в природных средах - атмосферную коррозию, морскую коррозию, подземную коррозию, биокоррозию; нередко особо рассматривают коррозию металлов в пресных водах (речных и озерных), гсотeрмальных, пластовых, шахтных и др. Еще более многообразны виды коррозии металлов в техн. средах; различают коррозию металлов в к-тах (неокислительных и окислительных), щелочах, орг. средах (напр., смазочноохлаждающих жидкостях, маслах, пищ. продуктах и др.), бетоне, расплавах солей, оборотных и сточных водах и др. По условиям протекания наряду с контактной и щелевой коррозией металлов выделяют коррозию по ватерлинии, коррозию в зонах обрызгивания, переменного смачивания, конденсации кислых паров; радиационную коррозию металлов, коррозию при теплопередаче, коррозию блуждающими токами и др. Особую группу образуют коррозионномех. разрушения, в к-рую входят помимо коррозионного растрескивания и коррозионной усталости фреттинг - коррозия, водородное охрупчивание, эрозионная коррозия (в пульпах и суспензиях с истирающими твердыми частицами), кавитационная коррозия (при одноврем. воздействии агрессивной среды и кавитации). В общем случае воздействие агрессивной среды и мех. факторов на разрушение неаддитивно. Напр., при эрозионной коррозии металлов потери металла вследствие разрушения защитной пленки м. 6. намного больше суммы потерь от эрозии и коррозии металлов по отдельности. Часто коррозию металлов классифицируют также по отдельным металлам и их группам, по конкретным отраслям, произ-вам и объектам. Коррозией часто наз. также происходящие при взаимод. со средами процессы разрушения неметаллич. материалов - полупроводников, бетона, полимеров, стеклопластиков и др. Представления о коррозии металлов, коррозионностойких материалах и защите от коррозии, коррозионных испытаниях, проводимых при разработках и выборе материалов и ср-в защиты, выделяются в самостоят, научно-техн. дисциплину - химическое сопротивление материалов.
===
Исп. литература для статьи «КОРРОЗИЯ МЕТАЛЛОВ»: Шлугeр М. А., Ажогин Ф. Ф., Ефимов М. А., Коррозия и зашита металлов, М., 1981; Коррозия. Справочник, под ред. Л. Л. Шрайера, пер. с англ., М.. 1981; Кeшe Г., Коррозия металлов, пер. с нем., М., 1984; Колотыркин Я. М., Металл и коррозия, М., 1985; Томашов Н. Д.. Чернова Г. П., Теория коррозии и коррозионно-стойкие конструкционные сплавы. М.. 1986. Л. И. Фрейман.

Страница «КОРРОЗИЯ МЕТАЛЛОВ» подготовлена по материалам химической энциклопедии.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн