Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ЭЛЕКТРОХИМИЧЕСКАЯ КИНЕТИКА

ЭЛЕКТРОХИМИЧЕСКАЯ КИНЕТИКА, раздел теоретич. электрохимии, рассматривающий закономерности, к-рым подчиняется скорость электродных процессов. Электрич. ток, проходящий через границу электрод - ионная система, связан с протеканием электродного процесса (фарадеевский ток) и с заряжением двойного электрического слоя (ток заряжения). Если св-ва пов-сти электрода не изменяются во времени, протекающий через электрод ток определяется только скоростью самого электродного процесса и размерами электрода. В этих условиях плотность тока i служит мерой скорости электрохим. р-ции. Если электрод находится при равновесном потенциале Ер, ток i = 0. При пропускании через электрод электрич. тока потенциал электрода отклоняется от Ер на величину6036-22.jpg к-рая называется поляризацией электрода. Для величины6036-23.jpg часто используют термин "перенапряжение" (обозначение6036-24.jpg).
Поляризация электрода обусловлена конечной скоростью электродного процесса, а потому она является ф-цией плотности тока. Функциональная зависимость6036-25.jpg от i (или i от6036-26.jpg ) называется поляризационной характеристикой электрода. Задача электрохимической кинетики заключается в установлении общих закономерностей, к-рым подчиняются поляризационные характеристики электродов, с целью регулирования скорости электродных процессов. Решение задач электрохимической кинетики имеет большое практич. значение, поскольку уменьшение поляризации6036-27.jpg при заданной плотности тока позволяет существенно повысить кпд использования электрохим. систем. Электрохимическая кинетика является теоретич. основой электрохимической защиты металлов от коррозии.
Поскольку электродные процессы являются гетерогенными и состоят из ряда последоват. стадий, общая поляризация6036-28.jpg определяется совокупностью поляризаций6036-29.jpg соответствующих отд. стадиям. Стадия, дающая наиб. вклад в суммарную величину6036-30.jpg является лимитирующей, она определяет вид поляризац. характеристики. Чтобы определить лимитирующую стадию, сравнивают закономерности исследуемого электродного процесса с закономерностями, характерными для разл. стадий. Определение лимитирующей стадии позволяет, меняя условия, изменить скорость электродного процесса в нужном направлении.
Во всех без исключения электродных процессах имеют место стадия массопереноса реагирующих в-в (к пов-сти электрода или от его пов-сти в объем) и стадия разряда- ионизации, связанная с переходом заряженных частиц через границу раздела фаз. Но если стадия массопереноса присуща любым гетерогенным процессам, то стадия разряда - ионизации является специфич. электрохим. стадией. По этой причине оформление электрохимической кинетики в самостоят. раздел теоретич. электрохимии связывают с разработкой теории замедленного разряда, описывающей кинетич. закономерности стадии разряда - ионизации (М. Фольмер, Т. Эрдей-Груз, А. Н. Фрумкин, 1930-33). Согласно этой теории, для электродного процесса типа Ох + ne-6036-31.jpgRed поляризац. характеристика описывается ур-нием:

6036-32.jpg

где Т - абс. т-ра; F - число Фарадея; R - газовая постоянная;6036-33.jpg - коэф. переноса6036-34.jpg ; i0 - плотн. тока обмена, к-рая обусловлена константой скорости стадии разряда - ионизации, строением двойного электрич. слоя, зарядовыми числами частиц Ох и Red и их энергиями адсорбции на данном электроде. При учете стадии массопереноса ур-ние принимает вид:

6036-35.jpg

где6036-36.jpgи6036-37.jpg-т.наз. предельные диффузионные токи, характеризующие максимально возможную скорость массопереноса частиц Ох и Red (см. Диффузионный ток). Эта скорость зависит от коэф. диффузии частиц, геометрии электрода и условий перемешивания р-ра. В учебных пособиях по электрохимической кинетике можно найти ур-ния функциональной зависимости6036-38.jpg для мн. других случаев, когда скорость электродных процессов определяется др. стадиями - хим. превращениями реагирующих в-в в объеме р-ра и на пов-сти электрода, стадиями образования и роста зародышей новой фазы, после-доват. переносом неск. электронов и др.
Для изучения электрохимической кинетики используют методы, позволяющие регистрировать зависимости i от6036-39.jpg в разл. условиях (разновидности метода полярографии, метод вращающегося дискового электрода и др.), а также разл. релаксационные методы, основанные на анализе временных зависимостей i при заданном6036-40.jpg(или6036-41.jpg при заданном i). Кроме того, для изучения кинетики и механизма сложных (многостадийных) электродных процессов применяют совокупность аналит. методов, позволяющих регистрировать возникновение и изменение во времени концентраций промежут. в-в и продуктов электролиза (электроаналит. методы; вращающийся дисковый электрод с кольцом; ИК и УФ спектроскопия; метод изотопных индикаторов, хроматография, ЭПР и др.). Используют также метод компьютерного моделирования, позволяющий дать оптимальное описание опытных зависимостей i от6036-42.jpgпутем подбора кинетич. параметров отд. стадий электродного процесса.

Лит.. Дамаский Б.Б., Петрий О. А., Введение в электрохимическую кинетику, 2 изд., М., 1983.

Б. Б. Дамаскин.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн