Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Поиск репетиторов
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ЭЛЕКТРОЛИТЫ ТВЁРДЫЕ

ЭЛЕКТРОЛИТЫ ТВЁРДЫЕ, в-ва, в к-рых электропроводность осуществляется движением ионов к.-л. одного знака -катионами или анионами. Ионы передвигаются по свободным позициям в структуре в-ва, разделенным невысокими потенц. барьерами (0,1-0,5 эВ). Кол-во позиций, к-рые могут занимать ионы проводимости, намного больше кол-ва самих ионов. Кроме того, эти позиции могут различаться по степени заселенности ионами. Напр., в элементарной ячейке6032-1.jpg-Agl на 42 позиции приходятся 2 иона Ag+, причем 12 тетраэдрич. позиций являются предпочтительными. Т. обр., подрешетка ионов проводимости разупорядочена, в то время как остальные ионы электролита твёрдого образуют жесткий каркас, и их перенос возможен по обычным механизмом образования точечных дефектов (вакансий и междоузельных ионов).
Ионная составляющая6032-2.jpg общей проводимости электролитов твёрдых, как правило, на 5-6 порядков больше электронной, т. е. числа переноса (см. Электропроводность электролитов)ионов проводимости практически равны 1. Коэф. диффузии Di этих ионов сравнимы с таковыми для конц. водных р-ров и соответствуют величинам порядка 10-5 - 10-6 см2/с.
Электролиты твёрдые относят к суперионным проводникам и часто наз. супериониками. Однако суперионик- более общее понятие, относящееся к высокопроводящим соед. как с ионной проводимостью (электролиты твёрдые), так и со смешанной ионно-электронной проводимостью. В электрохим. системах в отличие от электролитов твёрдых суперионики со смешанной проводимостью выполняют роль электродов.
Температурная зависимость ионной проводимости электролитов твёрдых6032-3.jpg описывается ур-нием:

6032-4.jpg

где А - константа, Т - абс. т-ра, Еа - энергия активации, k -константа Больцмана. Значение6032-5.jpgи Еа для наиб. известных электролитов твёрдых приведены в таблице.
Электролиты твёрдые подразделяются на электролиты с собственным структурным разупорядочением в одной из подрешеток и с примесным. К первым относятся в-ва, структура к-рых либо уже имеет пути проводимости для ионов определенного типа, как, напр., Na-6032-6.jpg-глинозем (полиалюминат натрия Na1+xAl11O17), либо приобретает их вследствие фазового перехода, как, напр., Agl (6032-7.jpg -переход при 420 К). Пути проводимости могут иметь вид каналов [напр., в (C5H5NH)Ag5I6], щелей (напр., в Na-6032-8.jpg-глиноземе) или трехмерных сеток (напр., в6032-9.jpg -Agl).
К электролитам твёрдым с примесным разупорядочением относятся твердые р-ры замещения, образующиеся в ионных кристаллах при легировании их ионами с валентностью, отличной от валентности основного иона. Возникающий при этом дефицит (или избыток) заряда компенсируется образованием дефектов противоположного знака. Так, в оксидах Zr, Hf, Се и Th, легир. оксидами двух- и трехвалентных металлов (Са, Y, Sc и др.), компенсация заряда примеси осуществляется кислородными вакансиями. Флюорит CaF2 и изоморфный ему SrF2 образуют твердые р-ры замещения с фторидами трехвалентных РЗЭ, обладающих высокой подвижностью ионов F-. Последние легко обмениваются на ионы О2-.
Характерное св-во электролитов твёрдых- способность к замещению одних ионов проводимости на другие. Напр., при выдерживании Na-6032-10.jpg-глинозема в расплаве AgNO3 ионы Na+ м. б. полностью замещены ионами Ag+. Если же Ag-b-глинозем поместить в р-р к-ты, то можно получить6032-13.jpg глинозем с высокой проводимостью по протонам - ионам Н+.

ХАРАКТЕРИСТИКА ПОЛИКРИСТАЛИЧЕСКИХ ТВЕРДЫХ ЭЛЕКТРОЛИТОВ

Подвижный ион
6032-11.jpg

См/м (298 K)

Ea,

эВ

6032-12.jpg
Ag+
337 (423 K)
0,101a
RbAg4I5
Ag+
28
0,104
Ag6WO4I4
Ag+
4,2
0,248
(C5H5NH)Ag5I6
Ag+
21 (323 K)
0,198б
Cs2Ag3Br3I2
Ag+
0,1
0,38
Cu4RbCl3I2
Cu+
47
0,115
Na2O x 10Al2O3e
Na+
3,3
0,140
Na2O x 10Al2O3
Na+
0,5
0,148
Na3Zr2Si2Р012
Na+
14 (573 K)
0,246д
32(РO4)3
Na+
19 (573 K)
0,144в
Na5DySi4O12
Na+
0,50
0,208
CsHSO4
H+
1,8 (435 K)
0,33ж
HUO2PO2 x 4H2O3
H+
0,32
0,32
H3PW12O40 x 19H2O3
H+
1,20
0,432
Cs3PW12O40 x 10H2O3
H+
1,6
0,223
Sb2O5 x 5,43H2O3
H+
0,75
0,16
0,75Li4GeO4 x 0,25Li3PO4
Li+
9,1 (573 K)
0,42
Sr0,8La0,2F2,2
F-
0,11 (573 K)
0,196
0,91ZrO2 x 0,09Sc2O3
O2-
30 (1273 K)
0,43
(Bi2O3)0,8(SrO)0,2
O2-
0,6 (773 K)
0,8

aПри Т>420 К. бПри Т>315 К. вСтеклообразное состояние. гМонокристалл (перпендикулярно оси с). дПри Т>505 К. вПри Т>429 К. жПри Т>414 К. зДанные при относит. влажности ок. 60%

Протонпроводящие электролиты твёрдые- в осн. кристаллогидраты твердых орг. и неорг. к-т и их солей, в к-рых перенос Н осуществляется либо по сетке водородных связей молекул Н2О (механизм туннельного перехода), либо перемещением иона гидроксония Н3О+ (прыжковый механизм), либо по молекулам, адсорбир. на межзеренных границах поликристаллич. материала. Исключение составляют безводные гидросульфаты и гидроселенаты щелочных металлов (напр., CsHSO4 и CsHSeO4), к-рые приобретают высокую ионную проводимость при т-рах выше структурного фазового перехода, когда число возможных мест локализации протонов оказывается вдвое больше числа самих протонов. Обладают протонной проводимостью и мн. полимерные структуры (см. ниже).
Большинство Ag+-проводящих электролитов твёрдых получают либо выращиванием монокристаллов (6032-14.jpg-Agl, RbAg4I5), либо твердофазным синтезом (RbAg4I5, (C5H5NH)Ag5I6 и др.). Для изготовления Li+-, Na+- и О2- -проводящих электролитов твёрдых используют технологию произ-ва керамики.
Существуют полимерные электролиты твёрдые, к-рые обладают пластичностью, из них можно изготавливать тонкие пленки толщиной 0,5-250 мкм. По электропроводности они сравнимы с жидкими и твердыми электролитами (6032-15.jpg1-10-3 См/м). Полимерные электролиты твёрдые- как правило, аморфные комплексы полимер-соль или полимер-к-та на. Получают их из полиэтиленоксида (ПЭО) и др. сходных по строению полимеров. Ион проводимости определяется природой второго компонента. При этом ион мигрирует вдоль полимерной цепи благодаря сегментальным движениям полимерной матрицы. Температурная зависимость проводимости комплексов удовлетворяет ур-нию, основанному на теории свободного объема:

6032-16.jpg

где Т0 - идеальная т-ра стеклования полимера, Т - т-ра системы, В - константа.
В системе ПЭО-Н3РО4 образуется комплекс (ПЭО) Н3РО4 с n =1,33, обладающий протонной проводимостью ок. 10-3 См/м (298 К). В комплексе ПЭО-NH4НSО4 анионы практически неподвижны и протон переносится катионами6032-17.jpg (6032-18.jpg2 x 10-2 См/м). В комплексах ПЭО-LiС1О4 ток переносится как ионами Li+, так и6032-19.jpg на подвижность к-рых оказывает влияние неполная диссоциация соли и образование ионных кластеров6032-20.jpg и6032-21.jpg
Аморфные структуры со св-вами электролитов твёрдых существуют и среди неорг. соединений. Это - стекла, представляющие собой трехмерные сетки, не имеющие строгой периодичности, но сохраняющие ближний порядок в расположении ионов. Такие структуры типа6032-22.jpg-RbAg4I5 обнаружены в смешанных галогенидных системах AgX-CsX и AgX-CuX-CsX (X = С1, Вr, I).
Используют электролиты твёрдые в химических источниках тока, ионисторах, хим. сенсорах, в качестве ионселективных мембран, при термодинамич. исследованиях и др.

Лит.: Укше Е. А., Букун Н.Г., Твердые электролиты, М., 1977; Чеботин В.Н., Перфильев М. В., Электрохимия твердых электролитов, М., 1978; Атовмян Л. О., Укше Е. А., в сб.: Физическая химия. Современные проблемы, под ред. Я. М. Колотыркина, М., 1983; Гуревич Ю. Я., Твердые электролиты, М., 1986; Мурыгин И. В., Электродные процессы в твердых электролитах, М., 1991; Сыромятников В. Г. [и др.], "Успехи химии", 1995, т. 64, в. 3, с. 265-74; Solid electrolytes, ed. by S. Geller., В., 1977; Armand M. В., Chabagno J. M., Duclot M. J., в кн.: Fast lon transport in solids, ed. P. Vashisnta, Amst., 1979, p. 131; Poulsen F. W., в кн.: High conductivity solid ionic conductors. Recent trends and applications, ed. by T. Takahashi, L., 1989, p. 166.

H. Г. Букун.

___

     © ХиМиК.ру




Реклама   Обратная связь   Дизайн