Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


ФЛАВОНОИДЫ

ФЛАВОНОИДЫ, растит. пигменты, представляющие собой гликозиды фенольного характера, содержащие в качестве агликона гл. обр. производные флавана (2-фенилхромана, ф-ла I).

Разнообразие прир. флавоноидов достигается вследствие того, что они, как правило, содержат в агликоне неск. гидроксильных или метоксильных групп, причем заместители находятся преим. в положениях 5, 7, 4', 3' и 5'.

5021-1.jpg

В зависимости от степени окисления центрального трехуглеродного фрагмента (атомы C2, C3 и C4) флавоноиды подразделяют на производные флавана (ф-ла I), флаван-3-ола (II, катехины), фла- ван-3,4-диола (III), З-гидрокси-2-фе-нилхромелийхлорида (IV; антоцианидины), флаванона (V), флаванонола (дигидрофлавона; VI), флавона (VII.), флавонола (VIII), изофлавона (IX). К флавоноидам в широком смысле слова относят также соед., химически и биосинтетически связанные с ними: производные халкона (X), дигидрохалкона (XI) и аурона (XTI).

5021-2.jpg

Большинство прир. флавоноидов- О-, реже С-гликозиды с одной или неск. гидроксильными или метоксильными группами; исключение составляют флавоны, среди к-рых гликозиды встречаются редко. Углеводная часть молекул флавоноидов обычно содержит остаток глюкозы, рамнозы, галактозы, арабинозы, ди- или трисахарида.

В природе наиб. широко распространены ацильные производные гликозидов антоцианидинов, флавонолов и флавонов, причем во всех известных случаях ацильный остаток (или неск. остатков) присоединяется к гидроксигруппам углеводного фрагмента. Наиб. часто ацильные остатки представлены гидроксикоричными к-тами [напр., транс-3-(3-гидроксифе-нил)пропеновой, или n-кумаровой, транс-3-(4-гидрокси-3-метоксифенил)пропеновой, или феруловой, либо транс-3-(3,4-дигидроксифенил)пропеновой, или кофейной], а также бензойными к-тами (n-гидроксибензойной, бензойной и галловой), простыми карбоновыми к-тами (уксусной, малоновой, янтарной) и реже серной к-той (типично для флавонов).

Все флаваноны, флаванонолы и дигидрохалконы - бесцв. кристаллы, халконы, флавоны, флавонолы и ауроны - кристаллы желтого цвета, антоцианидины (благодаря наличию оксониевой группы) имеют разл. окраску - от розовой до синей и фиолетовой (см. Антоцианы). Флавоноиды легко образуют комплексы с ионами металлов, что используют для их идентификации методами спектрофотометрии. Антоцианы образуют также комплексы с флавонолами и флавонами в результате возникновения водородных связей между гидроксильными группами ангидрооснования антоцианидинов и гидроксильными группами в ароматич. ядре (копигментация). В результате такого взаимод. достигается огромное разнообразие окраски цветков растений.

Флаван-3-олы, флаван-3,4-диолы и антоцианидины - нестойкие в-ва, легко окисляющиеся при нагр., под действием прямого солнечного света, ферментов пероксидазы и фенол-оксидазы. Флавоны и флавонолы, напротив, достаточно стабильны. Другие флавоноиды занимают промежут. положение. Флавоноиды также значительно различаются между собой по р-римости в орг. р-рителях и воде и др. физ.-хим. св-вам.

Общий предшественник всех флавоноидов- 4, 2', 4', б'-тетрагидрок-сихалкон (ХШ), образующийся в результате катализируемой ферментом халкон-синтазой конденсации малонил-кофер-мента А и n-кумарил-кофермента А, далеким предшественником к-рого является шикимовая к-та (ф-лу к-ты см. в ст. Обмен веществ), далее тетрагидроксихалкон под действием халкон-изомеразы превращается в 5, 7, 4'-тригидроксифлава-нон (нарингенин, XIV), из к-рого также ферментативным путем далее образуется большинство флавоноидов:

5021-3.jpg

Хим. синтез флавоноидов обычно осуществляют конденсацией 2-гид-роксиацетофенонов с ароматич. альдегидами или ацилирова-нием фенолов с коричными к-тами или их производными; в обоих случаях образуются гидроксихалконы, циклизация к-рых в присут. к-т приводит к соответствующим флаванонам.

Флавоны и флавонолы м.б. синтезированы окислением флаванонов (напр., под действием SeO2, H2O2). Флаван-3-олы, флаван-3,4-диолы и антоцианидины обычно получают восстановлением соответствующих флавонов или флаванолов; антоцианидины м. б. также синтезированы из полигидрокси-бензальдегидов.

Ф-ции флавоноидов в растениях разнообразны и не до конца изучены. Они защищают фотосинтезирующий аппарат клетки растений от повреждающего воздействия коротковолнового УФ излучения, обладают антимутагенной активностью и играют роль индукторов (сигнальных в-в) во взаимоотношениях растений с микроорганизмами. В ряде случаев флавоноиды служат защитными агентами при поражении растений патогенами.

Нек-рые флавоноиды, напр. катехин, гесперетин, рутин, кверцетин, а также производные халкона и дигидрохалкона относятся к группе витамина P (см. Биофлавоноиды)и обладают капил-ляроукрепляющим действием. Флавоноиды используют в медицине также в качестве радио- и гепатопротекторов, желчегонных, диуретич. и др. ср-в. Важное значение флавоноиды имеют в технол. процессах пищ. пром-сти, особенно в произ-ве чая, кофе, какао и виноделии, т.к. продукты окисления флавоноидов ответственны за специфич. вкусовые св-ва, цвет и, в известной мере, аромат продуктов переработки.

Лит.: Запрометов М.Н., Фенольные соединения: распространение, метаболизм и функции в растениях, M., 1993; The flavonoids, ed. by J.B. Harborne, TJ. Mabry, H. Mabry, L., 1975; The flavonoids: advances in research since 1980, ed. J.B. Harborne, L.-N.Y., 1988. M.H. Запрометов.

Еще по теме:

     © ХиМиК.ру




Реклама   Обратная связь   Дизайн