Неорганическая
Органическая
Коллоидная
Биологическая
Биохимия
Токсикологическая
Экологическая
Химическая энциклопедия
Советская энциклопедия
Справочник по веществам
Гетероциклы
Теплотехника
Углеводы
Квантовая химия
Моделирование ХТС
Номенклатура
Таблица Менделеева
Неорганические реакции
Органические реакции
Молярные массы
Форматирование формул
Редактор формул
Уравнивание реакций
Электронное строение атомов
Игра «Таблица Менделеева»
Термодинамические свойства
Конвертер величин
Гальванопара
Форум
Лекарства
Фармацевтика
Термины биохимии
Коды загрязняющих веществ
Стандартизация
Каталог предприятий


САМООРГАНИЗАЦИЯ

САМООРГАНИЗАЦИЯ, самопроизвольное (не требующее внеш. организующих воздействий) образование упорядоченных пространственных или временных структур в сильно неравновесных открытых системах (физ., хим., биол. и др.). Непрерывные потоки энергии или в-ва, поступающие в систему, поддерживают ее в состоянии, далеком от равновесия. При таких условиях в системе развиваются собственные (внутренние) неустойчивости (области неустойчивого поведения), развитием к-рых является самоорганизация.

Классич. пример физ. открытой системы с пространственной самоорганизацией-плоский горизонтальный слой вязкой жидкости, подогреваемый снизу. При относительно малых вертикальных градиентах т-ры в жидкости имеет место режим бесконвективной теплопроводности. Когда градиент т-ры превысит нек-рую критич. величину, в жидкости возникает конвекция. При малых превышениях градиента т-ры над критич. значением конвективные потоки в-ва приобретают упорядоченность: при наблюдении сверху они имеют вид валиков или шестиугольных ячеек (ячейки Бенара).

Генерация лазерного излучения считается примером временной самоорганизации. Лазер непрерывного действия-сильно неравновесная открытая система, образованная возбужденными частицами (атомами, молекулами) и модами электромагн. поля в резонаторе. Неравновесность этой системы поддерживается непрерывным притоком энергии от внеш. некогерентного источника (накачкой). При малых интенсивностях накачки излучение системы состоит из не сфазированных между собой цугов волн. С повышением интенсивности накачки вплоть до нек-рой пороговой величины излучение системы становится когерентным, т.е. представляет собой непрерывный волновой цуг, в к-ром фазы волн жестко скор-релированы на макроскопич. расстояниях от излучателя. Этот переход к генерации когерентных колебаний можно интерпретировать как самоорганизацию.

Примером самоорганизации в химии служит существование неск. устойчивых состояний в гомог. системах с хим. р-циями и диффузией реагентов. Этим состояниям соответствуют неоднородные пространств. распределения концентраций реагентов, наз. диссипативными структурами. В ответ на сколь угодно малое возмущение параметров система может переходить из одного состояния в другое, что наблюдается в виде волн (пространственно-временная структура; см. Колебательные реакции). Как показал М. Тьюринг (1952), в системе с двумя реагентами может появиться синусоидальная волна. Пространственно-временные структуры типичны для Белоусова - Жаботинского реакции, газофазного горения, ряда р-ций гетерог. каталитич. окисления, ферментативного катализа.

В космологии результатом самоорганизации можно считать образование спиральных галактик, в экологии-организацию сообществ, в биологии - явления морфогенеза. Поскольку упомянутые явления имеют общую феноменологию, они рассматриваются в рамках единых представлений. Возникшее новое междисциплинарное направление получило впоследствии назв. синергетики (Г. Хакен, 1985). Развитию представлений о самоорганизации в биологии способствовали работы П. Гленс-дорфа и И. Пригожина (1973). Существует, однако, мнение, что сложная внутр. организация клетки и организма м.б. понята без представлений о диссипативных структурах, в рамках иерархич. термодинамики (см. Термодинамика иерархических систем).

Самоорганизация в неравновесных системах принципиально отличается от явлений упорядочения при фазовых переходах в равновесных системах, где порядок возрастает с понижением т-ры: жидкость кристаллизуется, спины атомов ориентируются, образуя упорядоченную структуру, свойственную ферромагнетикам; в нек-рых металлах может осуществляться переход к когерентному квантовому состоянию, характерному для сверхпроводников. Общим для обоих процессов образования порядка в системе является понижение симметрии по отношению к трансляциям в пространстве или во времени.

Самоорганизация связана с турбулентностью. В упоминаемом выше примере с образованием в жидкости ячеек Бенара при высоких градиентах т-ры система переходит в состояние с турбулентным режимом течения. Переход к турбулентности (т.е. к хаотич. режиму) может занимать нек-рый интервал значений параметров, характеризующих степень внеш. воздействия на систему, и происходить путем по-следоват. усложнения регулярных (когерентных) структур, т.е. в условиях самоорганизации. Критерием отличия регулярного пространственно-временного режима поведения системы от хаотического служит устойчивость структуры к малым возмущениям начальных условий: если такая устойчивость имеет место, структуру можно считать регулярной независимо от. степени ее сложности.

На самоорганизацию в неравновесной открытой системе могут влиять флуктуации параметров состояния как самой системы, так и окружающей среды. В свою очередь, сама самоорганизация оказывает влияние на амплитуду и длительность флуктуации.

Лит.: Эйген М., Самоорганизация материи и эволюция биологических макромолекул, пер. с англ., М., 1973; Николис Г., Пригожин И., Самоорганизация в неравновесных структурах, пер. с англ., М., 1979; Эбелинг В., Образование структур при необратимых процессах, пер. с англ., М., 1979; Хакен Г., Синергетика, пер. с англ., М., 1980; Полак Л. С., Михайлов А. С., Самоорганизация в неравновесных физико-химических системах, М., 1983; Васнецова А. Л., Гладышев Г. П., Экологическая биофизическая химия, М., 1989. А.А.Овсянников.


     © ХиМиК.ру




Реклама   Обратная связь   Дизайн